BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 17038513)

  • 1. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
    Oliveri P; Walton KD; Davidson EH; McClay DR
    Development; 2006 Nov; 133(21):4173-81. PubMed ID: 17038513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network.
    Livi CB; Davidson EH
    Dev Biol; 2006 May; 293(2):513-25. PubMed ID: 16581059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo.
    Arenas-Mena C; Cameron RA; Davidson EH
    Dev Growth Differ; 2006 Sep; 48(7):463-72. PubMed ID: 16961593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut.
    Cole AG; Rizzo F; Martinez P; Fernandez-Serra M; Arnone MI
    Development; 2009 Feb; 136(4):541-9. PubMed ID: 19144720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network.
    Minokawa T; Wikramanayake AH; Davidson EH
    Dev Biol; 2005 Dec; 288(2):545-58. PubMed ID: 16289024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A gene regulatory network controlling the embryonic specification of endoderm.
    Peter IS; Davidson EH
    Nature; 2011 May; 474(7353):635-9. PubMed ID: 21623371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic pattern formation without morphogens.
    Bolouri H
    Bioessays; 2008 May; 30(5):412-7. PubMed ID: 18404688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network.
    Yuh CH; Dorman ER; Howard ML; Davidson EH
    Dev Biol; 2004 May; 269(2):536-51. PubMed ID: 15110718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Information processing at the foxa node of the sea urchin endomesoderm specification network.
    de-Leon SB; Davidson EH
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10103-8. PubMed ID: 20479235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strongylocentrotus purpuratus transcription factor GATA-E binds to and represses transcription at an Otx-Goosecoid cis-regulatory element within the aboral ectoderm-specific spec2a enhancer.
    Kiyama T; Zhang N; Dayal S; Yun Lee P; Liang S; Villinski JT; Klein WH
    Dev Biol; 2005 Apr; 280(2):436-47. PubMed ID: 15882584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subdividing the embryo: a role for Notch signaling during germ layer patterning in Xenopus laevis.
    Contakos SP; Gaydos CM; Pfeil EC; McLaughlin KA
    Dev Biol; 2005 Dec; 288(1):294-307. PubMed ID: 16289076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental expression of foxA and gata genes during gut formation in the polychaete annelid, Capitella sp. I.
    Boyle MJ; Seaver EC
    Evol Dev; 2008; 10(1):89-105. PubMed ID: 18184360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres.
    Revilla-i-Domingo R; Minokawa T; Davidson EH
    Dev Biol; 2004 Oct; 274(2):438-51. PubMed ID: 15385170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo.
    Peterson RE; McClay DR
    Dev Biol; 2005 Jun; 282(1):126-37. PubMed ID: 15936334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent in situ hybridization reveals multiple expression domains for SpBrn1/2/4 and identifies a unique ectodermal cell type that co-expresses the ParaHox gene SpLox.
    Cole AG; Arnone MI
    Gene Expr Patterns; 2009 Jun; 9(5):324-8. PubMed ID: 19250980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
    Duboc V; Lapraz F; Saudemont A; Bessodes N; Mekpoh F; Haillot E; Quirin M; Lepage T
    Development; 2010 Jan; 137(2):223-35. PubMed ID: 20040489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo.
    Röttinger E; Croce J; Lhomond G; Besnardeau L; Gache C; Lepage T
    Development; 2006 Nov; 133(21):4341-53. PubMed ID: 17038519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.