These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17038548)

  • 1. Scavenging of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K+ channels.
    Heusser K; Yuan H; Neagoe I; Tarasov AI; Ashcroft FM; Schwappach B
    J Cell Sci; 2006 Oct; 119(Pt 20):4353-63. PubMed ID: 17038548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multimeric membrane protein reveals 14-3-3 isoform specificity in forward transport in yeast.
    Michelsen K; Mrowiec T; Duderstadt KE; Frey S; Minor DL; Mayer MP; Schwappach B
    Traffic; 2006 Jul; 7(7):903-16. PubMed ID: 16734667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iptakalim, a vascular ATP-sensitive potassium (KATP) channel opener, closes rat pancreatic beta-cell KATP channels and increases insulin release.
    Misaki N; Mao X; Lin YF; Suga S; Li GH; Liu Q; Chang Y; Wang H; Wakui M; Wu J
    J Pharmacol Exp Ther; 2007 Aug; 322(2):871-8. PubMed ID: 17522344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of ER export signals in controlling surface potassium channel numbers.
    Ma D; Zerangue N; Lin YF; Collins A; Yu M; Jan YN; Jan LY
    Science; 2001 Jan; 291(5502):316-9. PubMed ID: 11209084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic isolation of transport signals directing cell surface expression.
    Shikano S; Coblitz B; Sun H; Li M
    Nat Cell Biol; 2005 Oct; 7(10):985-92. PubMed ID: 16155591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory modulation of ATP-sensitive potassium channels by gallate-ester moiety of (-)-epigallocatechin-3-gallate.
    Baek WK; Jang BC; Lim JH; Kwon TK; Lee HY; Cho CH; Kim DK; Shin DH; Park JG; Lim JG; Bae JH; Bae JH; Yoo SK; Park WK; Song DK
    Biochem Pharmacol; 2005 Nov; 70(11):1560-7. PubMed ID: 16216226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation.
    Lin YF; Chai Y
    Neuroscience; 2008 Mar; 152(2):371-80. PubMed ID: 18280666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects.
    Shimomura K; Girard CA; Proks P; Nazim J; Lippiat JD; Cerutti F; Lorini R; Ellard S; Hattersley AT; Barbetti F; Ashcroft FM
    Diabetes; 2006 Jun; 55(6):1705-12. PubMed ID: 16731833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane receptor trafficking: evidence of proximal and distal zones conferred by two independent endoplasmic reticulum localization signals.
    Shikano S; Li M
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5783-8. PubMed ID: 12724521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of two types of ATP-sensitive K+ channels in rat ventricular myocytes.
    Wu SN; Wu AZ; Sung RJ
    Life Sci; 2007 Jan; 80(4):378-87. PubMed ID: 17097686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the gene and protein expression of K(ATP) channel subunits in the hippocampus of rats subjected to picrotoxin-induced kindling.
    Jiang K; Shui Q; Xia Z; Yu Z
    Brain Res Mol Brain Res; 2004 Sep; 128(1):83-9. PubMed ID: 15337320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A di-acidic sequence motif enhances the surface expression of the potassium channel TASK-3.
    Zuzarte M; Rinné S; Schlichthörl G; Schubert A; Daut J; Preisig-Müller R
    Traffic; 2007 Aug; 8(8):1093-100. PubMed ID: 17547699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PDZ-binding and di-hydrophobic motifs regulate distribution of Kir4.1 channels in renal cells.
    Tanemoto M; Abe T; Ito S
    J Am Soc Nephrol; 2005 Sep; 16(9):2608-14. PubMed ID: 16033858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of ATP-sensitive K+ channels by caveolin-enriched microdomains in cardiac myocytes.
    Garg V; Jiao J; Hu K
    Cardiovasc Res; 2009 Apr; 82(1):51-8. PubMed ID: 19181933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 14-3-3 dimers probe the assembly status of multimeric membrane proteins.
    Yuan H; Michelsen K; Schwappach B
    Curr Biol; 2003 Apr; 13(8):638-46. PubMed ID: 12699619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desensitization of GABA(B) receptor signaling by formation of protein complexes of GABA(B2) subunit with GRK4 or GRK5.
    Kanaide M; Uezono Y; Matsumoto M; Hojo M; Ando Y; Sudo Y; Sumikawa K; Taniyama K
    J Cell Physiol; 2007 Jan; 210(1):237-45. PubMed ID: 17013811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 14-3-3 proteins in membrane protein transport.
    Mrowiec T; Schwappach B
    Biol Chem; 2006 Sep; 387(9):1227-36. PubMed ID: 16972791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 14-3-3 proteins regulate the potassium channel KAT1 by dual modes.
    Sottocornola B; Gazzarrini S; Olivari C; Romani G; Valbuzzi P; Thiel G; Moroni A
    Plant Biol (Stuttg); 2008 Mar; 10(2):231-6. PubMed ID: 18304197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Golgi export of Kir2.1 controls the stoichiometry of functional Kir2.x channel heteromers.
    Hofherr A; Fakler B; Klöcker N
    J Cell Sci; 2005 May; 118(Pt 9):1935-43. PubMed ID: 15827083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ER export of KAT1 is correlated to the number of acidic residues within a triacidic motif.
    Mikosch M; Käberich K; Homann U
    Traffic; 2009 Oct; 10(10):1481-7. PubMed ID: 19659502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.