BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 17038631)

  • 21. Cholesterol accumulation is increased in macrophages of phospholipid transfer protein-deficient mice: normalization by dietary alpha-tocopherol supplementation.
    Ogier N; Klein A; Deckert V; Athias A; Bessède G; Le Guern N; Lagrost L; Desrumaux C
    Arterioscler Thromb Vasc Biol; 2007 Nov; 27(11):2407-12. PubMed ID: 17717294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macrophage apolipoprotein E reduces atherosclerosis and prevents premature death in apolipoprotein E and scavenger receptor-class BI double-knockout mice.
    Yu H; Zhang W; Yancey PG; Koury MJ; Zhang Y; Fazio S; Linton MF
    Arterioscler Thromb Vasc Biol; 2006 Jan; 26(1):150-6. PubMed ID: 16269665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced CSF PLTP activity in Alzheimer's disease and other neurologic diseases; PLTP induces ApoE secretion in primary human astrocytes in vitro.
    Vuletic S; Peskind ER; Marcovina SM; Quinn JF; Cheung MC; Kennedy H; Kaye JA; Jin LW; Albers JJ
    J Neurosci Res; 2005 May; 80(3):406-13. PubMed ID: 15795933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. IGF-1 reduces inflammatory responses, suppresses oxidative stress, and decreases atherosclerosis progression in ApoE-deficient mice.
    Sukhanov S; Higashi Y; Shai SY; Vaughn C; Mohler J; Li Y; Song YH; Titterington J; Delafontaine P
    Arterioscler Thromb Vasc Biol; 2007 Dec; 27(12):2684-90. PubMed ID: 17916769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subphysiologic apolipoprotein E (ApoE) plasma levels inhibit neointimal formation after arterial injury in ApoE-deficient mice.
    Wientgen H; Thorngate FE; Omerhodzic S; Rolnitzky L; Fallon JT; Williams DL; Fisher EA
    Arterioscler Thromb Vasc Biol; 2004 Aug; 24(8):1460-5. PubMed ID: 15178566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic deletion of pregnancy-associated plasma protein-A is associated with resistance to atherosclerotic lesion development in apolipoprotein E-deficient mice challenged with a high-fat diet.
    Harrington SC; Simari RD; Conover CA
    Circ Res; 2007 Jun; 100(12):1696-702. PubMed ID: 17510462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone marrow-derived multidrug resistance protein ABCB4 protects against atherosclerotic lesion development in LDL receptor knockout mice.
    Pennings M; Hildebrand RB; Ye D; Kunne C; Van Berkel TJ; Groen AK; Van Eck M
    Cardiovasc Res; 2007 Oct; 76(1):175-83. PubMed ID: 17560559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice.
    Merhi-Soussi F; Kwak BR; Magne D; Chadjichristos C; Berti M; Pelli G; James RW; Mach F; Gabay C
    Cardiovasc Res; 2005 Jun; 66(3):583-93. PubMed ID: 15914123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Egr-1 deficiency in bone marrow-derived cells reduces atherosclerotic lesion formation in a hyperlipidaemic mouse model.
    Albrecht C; Preusch MR; Hofmann G; Morris-Rosenfeld S; Blessing E; Rosenfeld ME; Katus HA; Bea F
    Cardiovasc Res; 2010 May; 86(2):321-9. PubMed ID: 20110335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells.
    Vendrov AE; Hakim ZS; Madamanchi NR; Rojas M; Madamanchi C; Runge MS
    Arterioscler Thromb Vasc Biol; 2007 Dec; 27(12):2714-21. PubMed ID: 17823367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual PPARalpha/gamma agonist tesaglitazar reduces atherosclerosis in insulin-resistant and hypercholesterolemic ApoE*3Leiden mice.
    Zadelaar AS; Boesten LS; Jukema JW; van Vlijmen BJ; Kooistra T; Emeis JJ; Lundholm E; Camejo G; Havekes LM
    Arterioscler Thromb Vasc Biol; 2006 Nov; 26(11):2560-6. PubMed ID: 16931788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disruption of hedgehog signalling in ApoE - /- mice reduces plasma lipid levels, but increases atherosclerosis due to enhanced lipid uptake by macrophages.
    Beckers L; Heeneman S; Wang L; Burkly LC; Rousch MM; Davidson NO; Gijbels MJ; de Winther MP; Daemen MJ; Lutgens E
    J Pathol; 2007 Aug; 212(4):420-8. PubMed ID: 17573667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bcl-x inactivation in macrophages accelerates progression of advanced atherosclerotic lesions in Apoe(-/-) mice.
    Shearn AI; Deswaerte V; Gautier EL; Saint-Charles F; Pirault J; Bouchareychas L; Rucker EB; Beliard S; Chapman J; Jessup W; Huby T; Lesnik P
    Arterioscler Thromb Vasc Biol; 2012 May; 32(5):1142-9. PubMed ID: 22383704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of abdominal aortic aneurysm is decreased in mice with plasma phospholipid transfer protein deficiency.
    Deckert V; Kretz B; Habbout A; Raghay K; Labbé J; Abello N; Desrumaux C; Gautier T; Lemaire-Ewing S; Maquart G; Le Guern N; Masson D; Steinmetz E; Lagrost L
    Am J Pathol; 2013 Sep; 183(3):975-86. PubMed ID: 23830874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absence of p21Waf1/Cip1/Sdi1 modulates macrophage differentiation and inflammatory response and protects against atherosclerosis.
    Merched AJ; Chan L
    Circulation; 2004 Dec; 110(25):3830-41. PubMed ID: 15596565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diet-induced lipid accumulation in phospholipid transfer protein-deficient mice: its atherogenicity and potential mechanism.
    Yeang C; Qin S; Chen K; Wang DQ; Jiang XC
    J Lipid Res; 2010 Oct; 51(10):2993-3002. PubMed ID: 20543142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation.
    Lutgens E; Lutgens SP; Faber BC; Heeneman S; Gijbels MM; de Winther MP; Frederik P; van der Made I; Daugherty A; Sijbers AM; Fisher A; Long CJ; Saftig P; Black D; Daemen MJ; Cleutjens KB
    Circulation; 2006 Jan; 113(1):98-107. PubMed ID: 16365196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice.
    Potteaux S; Combadière C; Esposito B; Lecureuil C; Ait-Oufella H; Merval R; Ardouin P; Tedgui A; Mallat Z
    Arterioscler Thromb Vasc Biol; 2006 Aug; 26(8):1858-63. PubMed ID: 16763157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adipocyte phospholipid transfer protein and lipoprotein metabolism.
    Jiang H; Yazdanyar A; Lou B; Chen Y; Zhao X; Li R; Hoang Bui H; Kuo MS; Navab M; Qin S; Li Z; Jin W; Jiang XC
    Arterioscler Thromb Vasc Biol; 2015 Feb; 35(2):316-22. PubMed ID: 25477345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(ADP-ribose) polymerase inhibition reduces atherosclerotic plaque size and promotes factors of plaque stability in apolipoprotein E-deficient mice: effects on macrophage recruitment, nuclear factor-kappaB nuclear translocation, and foam cell death.
    Oumouna-Benachour K; Hans CP; Suzuki Y; Naura A; Datta R; Belmadani S; Fallon K; Woods C; Boulares AH
    Circulation; 2007 May; 115(18):2442-50. PubMed ID: 17438151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.