These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 17038800)

  • 1. Chromosome-specific satellite sequences in Turritis glabra.
    Kawabe A; Nasuda S
    Genes Genet Syst; 2006 Aug; 81(4):287-90. PubMed ID: 17038800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and genomic organization of centromeric repeats in Arabidopsis species.
    Kawabe A; Nasuda S
    Mol Genet Genomics; 2005 Feb; 272(6):593-602. PubMed ID: 15586291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species.
    Lysak MA; Berr A; Pecinka A; Schmidt R; McBreen K; Schubert I
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5224-9. PubMed ID: 16549785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species.
    Kamm A; Galasso I; Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1995 Mar; 27(5):853-62. PubMed ID: 7766876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences.
    Kawabe A; Nasuda S; Charlesworth D
    Genetics; 2006 Dec; 174(4):2021-32. PubMed ID: 17028323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping.
    Cai Z; Liu H; He Q; Pu M; Chen J; Lai J; Li X; Jin W
    BMC Genomics; 2014 Nov; 15(1):1025. PubMed ID: 25425126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences.
    Saito Y; Edpalina RR; Abe S
    Genetica; 2007 Oct; 131(2):157-66. PubMed ID: 17180439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome triplication found across the tribe Brassiceae.
    Lysak MA; Koch MA; Pecinka A; Schubert I
    Genome Res; 2005 Apr; 15(4):516-25. PubMed ID: 15781573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA.
    Martins C; Ferreira IA; Oliveira C; Foresti F; Galetti PM
    Genetica; 2006 May; 127(1-3):133-41. PubMed ID: 16850219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repetitive sequence families in Alces alces americana.
    Blake RD; Wang JZ; Beauregard L
    J Mol Evol; 1997 May; 44(5):509-20. PubMed ID: 9115175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymorphic chromosomal specificity of centromere satellite families in Arabidopsis halleri ssp. gemmifera.
    Kawabe A; Nasuda S
    Genetica; 2006 Mar; 126(3):335-42. PubMed ID: 16636927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization and evolution of alpha satellite DNA from human chromosome 11.
    Waye JS; Creeper LA; Willard HF
    Chromosoma; 1987; 95(3):182-8. PubMed ID: 3608717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives.
    Hall SE; Luo S; Hall AE; Preuss D
    Genetics; 2005 Aug; 170(4):1913-27. PubMed ID: 15937135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of a centromeric satellite DNA and phylogeny of lacertid lizards.
    Capriglione T; Cardone A; Odierna G; Olmo E
    Comp Biochem Physiol B; 1991; 100(3):641-5. PubMed ID: 1814688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens.
    Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A satellite DNA of the Sparidae family (pisces, perciformes) associated with telomeric sequences.
    Garrido-Ramos MA; de la Herrán R; CR Rejón ; MR Rejón
    Cytogenet Cell Genet; 1998; 83(1-2):3-9. PubMed ID: 9925909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species.
    Ribeiro T; Marques A; Novák P; Schubert V; Vanzela AL; Macas J; Houben A; Pedrosa-Harand A
    Chromosoma; 2017 Mar; 126(2):325-335. PubMed ID: 27645892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical relationship between satellite I and II DNA in centromeric regions of sheep chromosomes.
    D'Aiuto L; Barsanti P; Mauro S; Cserpan I; Lanave C; Ciccarese S
    Chromosome Res; 1997 Sep; 5(6):375-81. PubMed ID: 9364939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences.
    Pélissier T; Tutois S; Tourmente S; Deragon JM; Picard G
    Genetica; 1996 Mar; 97(2):141-51. PubMed ID: 8984010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.