BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 17040121)

  • 1. Large-scale turnover of functional transcription factor binding sites in Drosophila.
    Moses AM; Pollard DA; Nix DA; Iyer VN; Li XY; Biggin MD; Eisen MB
    PLoS Comput Biol; 2006 Oct; 2(10):e130. PubMed ID: 17040121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura.
    Berman BP; Pfeiffer BD; Laverty TR; Salzberg SL; Rubin GM; Eisen MB; Celniker SE
    Genome Biol; 2004; 5(9):R61. PubMed ID: 15345045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does positive selection drive transcription factor binding site turnover? A test with Drosophila cis-regulatory modules.
    He BZ; Holloway AK; Maerkl SJ; Kreitman M
    PLoS Genet; 2011 Apr; 7(4):e1002053. PubMed ID: 21572512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.
    Hodar C; Zuñiga A; Pulgar R; Travisany D; Chacon C; Pino M; Maass A; Cambiazo V
    Gene; 2014 Feb; 535(2):210-7. PubMed ID: 24321690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary mirages: selection on binding site composition creates the illusion of conserved grammars in Drosophila enhancers.
    Lusk RW; Eisen MB
    PLoS Genet; 2010 Jan; 6(1):e1000829. PubMed ID: 20107516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of evolutionary constraints in intronic and intergenic DNA of Drosophila.
    Halligan DL; Eyre-Walker A; Andolfatto P; Keightley PD
    Genome Res; 2004 Feb; 14(2):273-9. PubMed ID: 14762063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ancestral resurrection of the Drosophila S2E enhancer reveals accessible evolutionary paths through compensatory change.
    Martinez C; Rest JS; Kim AR; Ludwig M; Kreitman M; White K; Reinitz J
    Mol Biol Evol; 2014 Apr; 31(4):903-16. PubMed ID: 24408913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary plasticity of polycomb/trithorax response elements in Drosophila species.
    Hauenschild A; Ringrose L; Altmutter C; Paro R; Rehmsmeier M
    PLoS Biol; 2008 Oct; 6(10):e261. PubMed ID: 18959483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microevolution of cis-regulatory elements: an example from the pair-rule segmentation gene fushi tarazu in the Drosophila melanogaster subgroup.
    Bakkali M
    PLoS One; 2011; 6(11):e27376. PubMed ID: 22073317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracing the evolutionary history of Drosophila regulatory regions with models that identify transcription factor binding sites.
    Dermitzakis ET; Bergman CM; Clark AG
    Mol Biol Evol; 2003 May; 20(5):703-14. PubMed ID: 12679540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico evolution of the Drosophila gap gene regulatory sequence under elevated mutational pressure.
    Chertkova AA; Schiffman JS; Nuzhdin SV; Kozlov KN; Samsonova MG; Gursky VV
    BMC Evol Biol; 2017 Feb; 17(Suppl 1):4. PubMed ID: 28251865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between zeste binding sites does not block isolated yellow enhancers in Drosophila melanogaster.
    Zobacheva PY; Kulliev AP; Georgiev PG; Mel'nikova LS
    Dokl Biochem Biophys; 2003; 391():229-31. PubMed ID: 14531075
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of Lineage-Specific Cis-Regulatory Modules Associated with Variation in Transcription Factor Binding and Chromatin Activity Using Ornstein-Uhlenbeck Models.
    Naval-Sánchez M; Potier D; Hulselmans G; Christiaens V; Aerts S
    Mol Biol Evol; 2015 Sep; 32(9):2441-55. PubMed ID: 25944915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural selection in a population of Drosophila melanogaster explained by changes in gene expression caused by sequence variation in core promoter regions.
    Sato MP; Makino T; Kawata M
    BMC Evol Biol; 2016 Feb; 16():35. PubMed ID: 26860869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An organizational model of transcription factor binding sites for a histone promoter in D. melanogaster.
    Crayton ME; Ladd CE; Sommer M; Hampikian G; Strausbaugh LD
    In Silico Biol; 2004; 4(4):537-48. PubMed ID: 15752071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. zeste, a nonessential gene, potently activates Ultrabithorax transcription in the Drosophila embryo.
    Laney JD; Biggin MD
    Genes Dev; 1992 Aug; 6(8):1531-41. PubMed ID: 1644294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial distribution of predicted transcription factor binding sites in Drosophila ChIP peaks.
    Pettie KP; Dresch JM; Drewell RA
    Mech Dev; 2016 Aug; 141():51-61. PubMed ID: 27264535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of functional transcription factor binding sites using closely related Saccharomyces species.
    Doniger SW; Huh J; Fay JC
    Genome Res; 2005 May; 15(5):701-9. PubMed ID: 15837806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.