BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 17040560)

  • 1. Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs.
    Cardone MF; Alonso A; Pazienza M; Ventura M; Montemurro G; Carbone L; de Jong PJ; Stanyon R; D'Addabbo P; Archidiacono N; She X; Eichler EE; Warburton PE; Rocchi M
    Genome Biol; 2006; 7(10):R91. PubMed ID: 17040560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25.
    Ventura M; Mudge JM; Palumbo V; Burn S; Blennow E; Pierluigi M; Giorda R; Zuffardi O; Archidiacono N; Jackson MS; Rocchi M
    Genome Res; 2003 Sep; 13(9):2059-68. PubMed ID: 12915487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning.
    Piras FM; Nergadze SG; Poletto V; Cerutti F; Ryder OA; Leeb T; Raimondi E; Giulotto E
    Cytogenet Genome Res; 2009; 126(1-2):165-72. PubMed ID: 20016166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary new centromeres in primates.
    Rocchi M; Stanyon R; Archidiacono N
    Prog Mol Subcell Biol; 2009; 48():103-52. PubMed ID: 19521814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres.
    Alonso A; Mahmood R; Li S; Cheung F; Yoda K; Warburton PE
    Hum Mol Genet; 2003 Oct; 12(20):2711-21. PubMed ID: 12928482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome 6 phylogeny in primates and centromere repositioning.
    Eder V; Ventura M; Ianigro M; Teti M; Rocchi M; Archidiacono N
    Mol Biol Evol; 2003 Sep; 20(9):1506-12. PubMed ID: 12832646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary history of chromosome 11 featuring four distinct centromere repositioning events in Catarrhini.
    Cardone MF; Lomiento M; Teti MG; Misceo D; Roberto R; Capozzi O; D'Addabbo P; Ventura M; Rocchi M; Archidiacono N
    Genomics; 2007 Jul; 90(1):35-43. PubMed ID: 17490852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary movement of centromeres in horse, donkey, and zebra.
    Carbone L; Nergadze SG; Magnani E; Misceo D; Francesca Cardone M; Roberto R; Bertoni L; Attolini C; Francesca Piras M; de Jong P; Raudsepp T; Chowdhary BP; Guérin G; Archidiacono N; Rocchi M; Giulotto E
    Genomics; 2006 Jun; 87(6):777-82. PubMed ID: 16413164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cytogenetic analysis of eight inversion duplications of human chromosome 13q that each contain a neocentromere.
    Warburton PE; Dolled M; Mahmood R; Alonso A; Li S; Naritomi K; Tohma T; Nagai T; Hasegawa T; Ohashi H; Govaerts LC; Eussen BH; Van Hemel JO; Lozzio C; Schwartz S; Dowhanick-Morrissette JJ; Spinner NB; Rivera H; Crolla JA; Yu C; Warburton D
    Am J Hum Genet; 2000 Jun; 66(6):1794-806. PubMed ID: 10777715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent sites for new centromere seeding.
    Ventura M; Weigl S; Carbone L; Cardone MF; Misceo D; Teti M; D'Addabbo P; Wandall A; Björck E; de Jong PJ; She X; Eichler EE; Archidiacono N; Rocchi M
    Genome Res; 2004 Sep; 14(9):1696-703. PubMed ID: 15342555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent establishment of de novo centromeres in the pericentromeric region of maize chromosome 3.
    Zhao H; Zeng Z; Koo DH; Gill BS; Birchler JA; Jiang J
    Chromosome Res; 2017 Oct; 25(3-4):299-311. PubMed ID: 28831743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primate chromosome evolution: with reference to marker order and neocentromeres.
    Stanyon R; Bigoni F
    Genetika; 2010 Sep; 46(9):1226-33. PubMed ID: 21058511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution of the human chromosome 15 pericentromeric region.
    Locke DP; Jiang Z; Pertz LM; Misceo D; Archidiacono N; Eichler EE
    Cytogenet Genome Res; 2005; 108(1-3):73-82. PubMed ID: 15545718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary molecular cytogenetics of catarrhine primates: past, present and future.
    Stanyon R; Rocchi M; Bigoni F; Archidiacono N
    Cytogenet Genome Res; 2012; 137(2-4):273-84. PubMed ID: 22710640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal dynamics of human neocentromere formation.
    Warburton PE
    Chromosome Res; 2004; 12(6):617-26. PubMed ID: 15289667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interplay between genome organization and nuclear architecture of primate evolutionary neo-centromeres.
    Lomiento M; Grasser F; Rocchi M; Müller S
    Genomics; 2013 Oct; 102(4):288-95. PubMed ID: 23648727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centromere repositioning in mammals.
    Rocchi M; Archidiacono N; Schempp W; Capozzi O; Stanyon R
    Heredity (Edinb); 2012 Jan; 108(1):59-67. PubMed ID: 22045381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of growth hormone gene family in old world monkeys and hominoids.
    Ye C; Li Y; Shi P; Zhang YP
    Gene; 2005 May; 350(2):183-92. PubMed ID: 15848116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary and clinical neocentromeres: two faces of the same coin?
    Capozzi O; Purgato S; Verdun di Cantogno L; Grosso E; Ciccone R; Zuffardi O; Della Valle G; Rocchi M
    Chromosoma; 2008 Aug; 117(4):339-44. PubMed ID: 18274768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A satellite-like sequence, representing a "clone gap" in the human genome, was likely involved in the seeding of a novel centromere in macaque.
    Carbone L; D'addabbo P; Cardone MF; Teti MG; Misceo D; Vessere GM; de Jong PJ; Rocchi M
    Chromosoma; 2009 Apr; 118(2):269-77. PubMed ID: 19048265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.