These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 17040781)
1. Differences in energy metabolism between trypanosomatidae. Tielens AG; Van Hellemond JJ Parasitol Today; 1998 Jul; 14(7):265-72. PubMed ID: 17040781 [TBL] [Abstract][Full Text] [Related]
2. A gene encoding the plant-like alternative oxidase is present in Phytomonas but absent in Leishmania spp. Van Hellemond JJ; Simons B; Millenaar FF; Tielens AG J Eukaryot Microbiol; 1998; 45(4):426-30. PubMed ID: 9703678 [TBL] [Abstract][Full Text] [Related]
3. Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase. Van Hellemond JJ; Opperdoes FR; Tielens AG Proc Natl Acad Sci U S A; 1998 Mar; 95(6):3036-41. PubMed ID: 9501211 [TBL] [Abstract][Full Text] [Related]
4. Separation of NADH-fumarate reductase and succinate dehydrogenase activities in Trypanosoma cruzi. Christmas PB; Turrens JF FEMS Microbiol Lett; 2000 Feb; 183(2):225-8. PubMed ID: 10675588 [TBL] [Abstract][Full Text] [Related]
5. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists. Balcazar DE; Vanrell MC; Romano PS; Pereira CA; Goldbaum FA; Bonomi HR; Carrillo C PLoS Negl Trop Dis; 2017 Apr; 11(4):e0005513. PubMed ID: 28406895 [TBL] [Abstract][Full Text] [Related]
6. Horizontal gene transfer confers fermentative metabolism in the respiratory-deficient plant trypanosomatid Phytomonas serpens. Ienne S; Pappas G; Benabdellah K; González A; Zingales B Infect Genet Evol; 2012 Apr; 12(3):539-48. PubMed ID: 22293462 [TBL] [Abstract][Full Text] [Related]
8. Surprising variety in energy metabolism within Trypanosomatidae. Tielens AG; van Hellemond JJ Trends Parasitol; 2009 Oct; 25(10):482-90. PubMed ID: 19748317 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Verner Z; Cermáková P; Skodová I; Kováčová B; Lukeš J; Horváth A Mol Biochem Parasitol; 2014 Jan; 193(1):55-65. PubMed ID: 24556248 [TBL] [Abstract][Full Text] [Related]
10. The mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase of Trypanosomatidae and the glycosomal redox balance of insect stages of Trypanosoma brucei and Leishmania spp. Guerra DG; Decottignies A; Bakker BM; Michels PA Mol Biochem Parasitol; 2006 Oct; 149(2):155-69. PubMed ID: 16806528 [TBL] [Abstract][Full Text] [Related]
11. Energy generation in parasitic helminths. Tielens AG Parasitol Today; 1994 Sep; 10(9):346-52. PubMed ID: 15275412 [TBL] [Abstract][Full Text] [Related]
12. The internal transcribed spacer of ribosomal RNA genes in plant trypanosomes (Phytomonas spp.) resolves 10 groups. Dollet M; Sturm NR; Campbell DA Infect Genet Evol; 2012 Mar; 12(2):299-308. PubMed ID: 22155359 [TBL] [Abstract][Full Text] [Related]
13. Identification of Trypanosomatids by detecting Single Nucleotide Fingerprints using DNA analysis by dynamic chemistry with MALDI-ToF. Angélica Luque-González M; Tabraue-Chávez M; López-Longarela B; María Sánchez-Martín R; Ortiz-González M; Soriano-Rodríguez M; Antonio García-Salcedo J; Pernagallo S; José Díaz-Mochón J Talanta; 2018 Jan; 176():299-307. PubMed ID: 28917755 [TBL] [Abstract][Full Text] [Related]
14. Purine and pyrimidine metabolism in the Trypanosomatidae. Hammond DJ; Gutteridge WE Mol Biochem Parasitol; 1984 Nov; 13(3):243-61. PubMed ID: 6396514 [TBL] [Abstract][Full Text] [Related]
15. Acetate formation in the energy metabolism of parasitic helminths and protists. Tielens AG; van Grinsven KW; Henze K; van Hellemond JJ; Martin W Int J Parasitol; 2010 Mar; 40(4):387-97. PubMed ID: 20085767 [TBL] [Abstract][Full Text] [Related]
16. Intracellular location of the early steps of the isoprenoid biosynthetic pathway in the trypanosomatids Leishmania major and Trypanosoma brucei. Carrero-Lérida J; Pérez-Moreno G; Castillo-Acosta VM; Ruiz-Pérez LM; González-Pacanowska D Int J Parasitol; 2009 Feb; 39(3):307-14. PubMed ID: 18848949 [TBL] [Abstract][Full Text] [Related]
17. [TRANSFORMATIONS OF LIFE CYCLES IN THE EVOLUTIONARY HISTORY OF TRYPANOSOMATIDS. MACROTRANSFORMATIONS]. Frolov AO; Malysheva MN; Kostygov AY Parazitologiia; 2015; 49(4):233-56. PubMed ID: 26827484 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. Parsons M; Worthey EA; Ward PN; Mottram JC BMC Genomics; 2005 Sep; 6():127. PubMed ID: 16164760 [TBL] [Abstract][Full Text] [Related]
19. Molecular and biochemical studies on the hypoxanthine-guanine phosphoribosyltransferases of the pathogenic haemoflagellates. Ullman B; Carter D Int J Parasitol; 1997 Feb; 27(2):203-13. PubMed ID: 9088991 [TBL] [Abstract][Full Text] [Related]
20. Functional and molecular characterization of a glycosomal PPi-dependent enzyme in trypanosomatids: pyruvate, phosphate dikinase. Bringaud F; Baltz D; Baltz T Proc Natl Acad Sci U S A; 1998 Jul; 95(14):7963-8. PubMed ID: 9653123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]