These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 17041035)

  • 1. Analysis of proline reduction in the nosocomial pathogen Clostridium difficile.
    Jackson S; Calos M; Myers A; Self WT
    J Bacteriol; 2006 Dec; 188(24):8487-95. PubMed ID: 17041035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline-dependent regulation of Clostridium difficile Stickland metabolism.
    Bouillaut L; Self WT; Sonenshein AL
    J Bacteriol; 2013 Feb; 195(4):844-54. PubMed ID: 23222730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.
    Johnstone MA; Self WT
    J Bacteriol; 2022 Aug; 204(8):e0022922. PubMed ID: 35862761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the global regulator Rex in control of NAD
    Bouillaut L; Dubois T; Francis MB; Daou N; Monot M; Sorg JA; Sonenshein AL; Dupuy B
    Mol Microbiol; 2019 Jun; 111(6):1671-1688. PubMed ID: 30882947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenium requirement for the growth of Clostridium sporogenes with glycine as the oxidant in stickland reaction systems.
    Costilow RN
    J Bacteriol; 1977 Jul; 131(1):366-8. PubMed ID: 873891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Stickland Reaction Precursor
    Reed AD; Fletcher JR; Huang YY; Thanissery R; Rivera AJ; Parsons RJ; Stewart AK; Kountz DJ; Shen A; Balskus EP; Theriot CM
    mSphere; 2022 Apr; 7(2):e0092621. PubMed ID: 35350846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenium-dependent growth of Treponema denticola: evidence for a clostridial-type glycine reductase.
    Rother M; Böck A; Wyss C
    Arch Microbiol; 2001 Dec; 177(1):113-6. PubMed ID: 11797052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway.
    Gencic S; Grahame DA
    J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32967909
    [No Abstract]   [Full Text] [Related]  

  • 9. Time-resolved amino acid uptake of Clostridium difficile 630Δerm and concomitant fermentation product and toxin formation.
    Neumann-Schaal M; Hofmann JD; Will SE; Schomburg D
    BMC Microbiol; 2015 Dec; 15():281. PubMed ID: 26680234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Clostridium difficile proline racemase is not essential for early logarithmic growth and infection.
    Wu X; Hurdle JG
    Can J Microbiol; 2014 Apr; 60(4):251-4. PubMed ID: 24693984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of the pyruvoyl-dependent proline reductase Prd from
    Behlendorf C; Diwo M; Neumann-Schaal M; Fuchs M; Körner D; Jänsch L; Faber F; Blankenfeldt W
    PNAS Nexus; 2024 Jul; 3(7):pgae249. PubMed ID: 38979079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fate of the carboxyl oxygens during D-proline reduction by clostridial proline reductase.
    Arkowitz RA; Dhe-Paganon S; Abeles RH
    Arch Biochem Biophys; 1994 Jun; 311(2):457-9. PubMed ID: 8203910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of growth conditions on glycine reductase of Clostridium sporogenes.
    Venugopalan V
    J Bacteriol; 1980 Jan; 141(1):386-8. PubMed ID: 7354004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of bifunctional proline racemase/hydroxyproline epimerase from archaea: discrimination of substrates and molecular evolution.
    Watanabe S; Tanimoto Y; Nishiwaki H; Watanabe Y
    PLoS One; 2015; 10(3):e0120349. PubMed ID: 25786142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum.
    Dürre P; Andreesen JR
    J Gen Microbiol; 1982 Jul; 128(7):1457-66. PubMed ID: 7119740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence.
    Fonknechten N; Chaussonnerie S; Tricot S; Lajus A; Andreesen JR; Perchat N; Pelletier E; Gouyvenoux M; Barbe V; Salanoubat M; Le Paslier D; Weissenbach J; Cohen GN; Kreimeyer A
    BMC Genomics; 2010 Oct; 11():555. PubMed ID: 20937090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxin production by Clostridium difficile in a defined medium with limited amino acids.
    Yamakawa K; Kamiya S; Meng XQ; Karasawa T; Nakamura S
    J Med Microbiol; 1994 Nov; 41(5):319-23. PubMed ID: 7966203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein.
    Kabisch UC; Gräntzdörffer A; Schierhorn A; Rücknagel KP; Andreesen JR; Pich A
    J Biol Chem; 1999 Mar; 274(13):8445-54. PubMed ID: 10085076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenium-dependent glycine reductase: differences in physicochemical properties and biological activities of selenoprotein A components isolated from Clostridium sticklandii and Clostridium purinolyticum.
    Sliwkowski MX; Stadtman TC
    Biofactors; 1988 Dec; 1(4):293-6. PubMed ID: 3255358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine metabolism in anaerobes.
    Andreesen JR
    Antonie Van Leeuwenhoek; 1994; 66(1-3):223-37. PubMed ID: 7747933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.