BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1704105)

  • 1. The low KM-phosphodiesterase inhibitor denbufylline enhances neuronal excitability in guinea pig hippocampus in vitro.
    Sutor B; Alzheimer C; Ameri A; ten Bruggencate G
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Sep; 342(3):349-56. PubMed ID: 1704105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue selective inhibition of cyclic nucleotide phosphodiesterase by denbufylline.
    Wilke R; Arch JR; Nicholson CD
    Arzneimittelforschung; 1989 Jun; 39(6):665-7. PubMed ID: 2476135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ability of denbufylline to inhibit cyclic nucleotide phosphodiesterase and its affinity for adenosine receptors and the adenosine re-uptake site.
    Nicholson CD; Jackman SA; Wilke R
    Br J Pharmacol; 1989 Jul; 97(3):889-97. PubMed ID: 2474352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of the hypothalamo-pituitary-adrenal axis in the rat by three selective type-4 phosphodiesterase inhibitors: in vitro and in vivo studies.
    Kumari M; Cover PO; Poyser RH; Buckingham JC
    Br J Pharmacol; 1997 Jun; 121(3):459-68. PubMed ID: 9179387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of phosphodiesterase inhibition on the excitability of hippocampal pyramidal neurons in vitro.
    Gaal L; Schudt C; Illes P
    Eur J Pharmacol; 1991 Sep; 202(1):117-20. PubMed ID: 1723951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats.
    Hollrigel GS; Chen K; Baram TZ; Soltesz I
    Neuroscience; 1998 May; 84(1):71-9. PubMed ID: 9522363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of the hypothalamo-pituitary-adrenal axis in the rat by the type 4 phosphodiesterase (PDE-4) inhibitor, denbufylline.
    Hadley AJ; Kumari M; Cover PO; Osborne J; Poyser R; Flack JD; Buckingham JC
    Br J Pharmacol; 1996 Oct; 119(3):463-70. PubMed ID: 8894165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective effects of phosphodiesterase inhibitors on different phosphodiesterases, adenosine 3',5'-monophosphate metabolism, and lipolysis in 3T3-L1 adipocytes.
    Elks ML; Manganiello VC
    Endocrinology; 1984 Oct; 115(4):1262-8. PubMed ID: 6207009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disinhibition of hippocampal CA3 neurons induced by suppression of an adenosine A1 receptor-mediated inhibitory tonus: pre- and postsynaptic components.
    Alzheimer C; Sutor B; ten Bruggencate G
    Neuroscience; 1993 Dec; 57(3):565-75. PubMed ID: 8309525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentiation of slow component of delayed rectifier K(+) current by cGMP via two distinct mechanisms: inhibition of phosphodiesterase 3 and activation of protein kinase G.
    Shimizu K; Shintani Y; Ding WG; Matsuura H; Bamba T
    Br J Pharmacol; 2002 Sep; 137(1):127-37. PubMed ID: 12183338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by adenosine receptors in the rat hippocampus.
    Morton RA; Davies CH
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):75-90. PubMed ID: 9234198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of rolipram-sensitive cyclic AMP phosphodiesterase in the regulation of cardiac contraction.
    Muller B; Lugnier C; Stoclet JC
    J Cardiovasc Pharmacol; 1990 Nov; 16(5):796-803. PubMed ID: 1703603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of relaxant responses evoked by a nitric oxide donor and by nonadrenergic, noncholinergic stimulation by isozyme-selective phosphodiesterase inhibitors in guinea pig trachea.
    Ellis JL; Conanan ND
    J Pharmacol Exp Ther; 1995 Mar; 272(3):997-1004. PubMed ID: 7891355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of guinea-pig eosinophil phosphodiesterase activity. Assessment of its involvement in regulating superoxide generation.
    Souness JE; Carter CM; Diocee BK; Hassall GA; Wood LJ; Turner NC
    Biochem Pharmacol; 1991 Jul; 42(4):937-45. PubMed ID: 1651083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the mechanism of enhancement of purinergic transmission by caffeine in the guinea-pig isolated vas deferens.
    Ziogas J; O'Farrell M
    Auton Autacoid Pharmacol; 2002 Jun; 22(3):161-9. PubMed ID: 12452901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of synaptic efficacy in field CA1 of the rat hippocampus by forskolin.
    Chavez-Noriega LE; Stevens CF
    Brain Res; 1992 Mar; 574(1-2):85-92. PubMed ID: 1379110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic adenosine 3',5'-monophosphate mediates beta-receptor actions of noradrenaline in rat hippocampal pyramidal cells.
    Madison DV; Nicoll RA
    J Physiol; 1986 Mar; 372():245-59. PubMed ID: 2425084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevation of cAMP facilitates noradrenergic transmission in submucous neurons of guinea pig ileum.
    Zafirov DH; Cooke HJ; Wood JD
    Am J Physiol; 1993 Mar; 264(3 Pt 1):G442-6. PubMed ID: 7681627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some properties of adenosine 3',5'-cyclic monophosphate phosphodiesterase in the superior cervical ganglion of the guinea pig.
    Capuzzo A; Biondi C; Borasio PG; Ferretti ME; Fabbri E
    Neurochem Res; 1986 Oct; 11(10):1425-37. PubMed ID: 2431335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative inotropic action of denbufylline through interfering with the calcium channel independently of its PDE IV inhibitory activity in guinea pig ventricle papillary muscles.
    Sanae F; Ohmae S; Kobayashi D; Takag K; Miyamoto K
    J Pharmacol Exp Ther; 1996 Apr; 277(1):54-60. PubMed ID: 8613965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.