BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 1704125)

  • 1. Continuous microspectrophotometric measurement of DNA polymerase activity: application to the Klenow fragment of Escherichia coli DNA polymerase I and human immunodeficiency virus type 1 reverse transcriptase.
    Baillon JG; Nashed NT; Sayer JM; Jerina DM
    Proc Natl Acad Sci U S A; 1991 Feb; 88(3):1014-8. PubMed ID: 1704125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of 4-thiothymidine into DNA by the Klenow fragment and HIV-1 reverse transcriptase.
    Rao TV; Haber MT; Sayer JM; Jerina DM
    Bioorg Med Chem Lett; 2000 May; 10(9):907-10. PubMed ID: 10853657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition by viral and cellular DNA polymerases of nucleosides bearing bases with nonstandard hydrogen bonding patterns.
    Horlacher J; Hottiger M; Podust VN; Hübscher U; Benner SA
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6329-33. PubMed ID: 7541538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition and use of the unusual X-DNA as a primer-template by Klenow DNA polymerase enzyme.
    Sági J; Vorlícková M; Kypr J; Otvös L
    Biochem Biophys Res Commun; 1989 Jun; 161(3):1204-12. PubMed ID: 2662973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-L-thymidine 5'-triphosphate analogs as DNA polymerase substrates.
    Van Draanen NA; Tucker SC; Boyd FL; Trotter BW; Reardon JE
    J Biol Chem; 1992 Dec; 267(35):25019-24. PubMed ID: 1281153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mnemonic aspects of Escherichia coli DNA polymerase I. Interaction with one template influences the next interaction with another template.
    Papanicolaou C; Lecomte P; Ninio J
    J Mol Biol; 1986 Jun; 189(3):435-48. PubMed ID: 3537308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases.
    Moore PD; Bose KK; Rabkin SD; Strauss BS
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):110-4. PubMed ID: 6165985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two DNA polymerases: HIV reverse transcriptase and the Klenow fragment of Escherichia coli DNA polymerase I.
    Steitz TA; Smerdon S; Jäger J; Wang J; Kohlstaedt LA; Friedman JM; Beese LS; Rice PA
    Cold Spring Harb Symp Quant Biol; 1993; 58():495-504. PubMed ID: 7525146
    [No Abstract]   [Full Text] [Related]  

  • 9. Translesional synthesis on DNA templates containing the 2'-deoxyribonolactone lesion.
    Berthet N; Roupioz Y; Constant JF; Kotera M; Lhomme J
    Nucleic Acids Res; 2001 Jul; 29(13):2725-32. PubMed ID: 11433017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site.
    Moore BM; Jalluri RK; Doughty MB
    Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deoxyadenosine-based DNA polymerase photoprobes: design, synthesis, and characterization as inhibitors of the Escherichia coli DNA polymerase I Klenow fragment.
    Moore BM; Li K; Doughty MB
    Biochemistry; 1996 Sep; 35(36):11634-41. PubMed ID: 8794743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apparent allosterism by avian myeloblastosis virus reverse transcriptase and E. coli DNA polymerase I.
    Darling TL; Reid TW
    Nucleic Acids Res; 1979 Mar; 6(3):1189-201. PubMed ID: 86985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human immunodeficiency virus reverse transcriptase. A kinetic analysis of RNA-dependent and DNA-dependent DNA polymerization.
    Reardon JE
    J Biol Chem; 1993 Apr; 268(12):8743-51. PubMed ID: 7682554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode of inhibition of HIV-1 reverse transcriptase by polyacetylenetriol, a novel inhibitor of RNA- and DNA-directed DNA polymerases.
    Loya S; Rudi A; Kashman Y; Hizi A
    Biochem J; 2002 Mar; 362(Pt 3):685-92. PubMed ID: 11879196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the idling-turnover reaction of the large (Klenow) fragment of Escherichia coli DNA polymerase I.
    Mizrahi V; Benkovic PA; Benkovic SJ
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):231-5. PubMed ID: 3510431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs].
    Nevinskiĭ GA; Potapova IA; Tarusova NB; Khalabuda OV; Khomov VV
    Mol Biol (Mosk); 1990; 24(1):104-16. PubMed ID: 2161489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of primers and templates in the synthesis of DNA catalyzed by human immunodeficiency virus type 1 reverse transcriptase.
    Nevinsky GA; Andreola ML; Jamkovoy VI; Levina AS; Barr PJ; Tarrago-Litvak L; Tharaud D; Litvak S
    Eur J Biochem; 1992 Jul; 207(1):351-8. PubMed ID: 1378404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of human immunodeficiency virus type 1 reverse transcriptase by 3'-blocked oligonucleotide primers.
    Austermann S; Kruhøffer M; Grosse F
    Biochem Pharmacol; 1992 Jun; 43(12):2581-9. PubMed ID: 1378738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of a double-stranded hindrance on DNA synthesis performed by DNA polymerase alpha, T4 DNA polymerase, DNA polymerase I (Klenow fragment) and AMV reverse transcriptase.
    Scamrov AV; Beabealashvilli RS
    FEBS Lett; 1988 Feb; 228(1):144-8. PubMed ID: 2449362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of nucleotide incorporation and misincorporation by Klenow fragment of Escherichia coli DNA polymerase I.
    Benkovic SJ; Cameron CE
    Methods Enzymol; 1995; 262():257-69. PubMed ID: 8594352
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.