BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 17041626)

  • 1. mTOR, translation initiation and cancer.
    Mamane Y; Petroulakis E; LeBacquer O; Sonenberg N
    Oncogene; 2006 Oct; 25(48):6416-22. PubMed ID: 17041626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IGF-1-stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways.
    Bibollet-Bahena O; Almazan G
    J Neurochem; 2009 Jun; 109(5):1440-51. PubMed ID: 19453943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When translation meets transformation: the mTOR story.
    Averous J; Proud CG
    Oncogene; 2006 Oct; 25(48):6423-35. PubMed ID: 17041627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mammalian target of rapamycin pathway and its role in molecular nutrition regulation.
    Lian J; Yan XH; Peng J; Jiang SW
    Mol Nutr Food Res; 2008 Apr; 52(4):393-9. PubMed ID: 18306429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway.
    Chenal J; Pellerin L
    J Neurochem; 2007 Jul; 102(2):389-97. PubMed ID: 17394554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raptor-rictor axis in TGFbeta-induced protein synthesis.
    Das F; Ghosh-Choudhury N; Mahimainathan L; Venkatesan B; Feliers D; Riley DJ; Kasinath BS; Choudhury GG
    Cell Signal; 2008 Feb; 20(2):409-23. PubMed ID: 18068336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid-beta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons.
    Chen TJ; Wang DC; Chen SS
    J Neurosci Res; 2009 Aug; 87(10):2297-307. PubMed ID: 19301428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression.
    Fingar DC; Blenis J
    Oncogene; 2004 Apr; 23(18):3151-71. PubMed ID: 15094765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway.
    Pervin S; Singh R; Hernandez E; Wu G; Chaudhuri G
    Cancer Res; 2007 Jan; 67(1):289-99. PubMed ID: 17210710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statin-dependent suppression of the Akt/mammalian target of rapamycin signaling cascade and programmed cell death 4 up-regulation in renal cell carcinoma.
    Woodard J; Sassano A; Hay N; Platanias LC
    Clin Cancer Res; 2008 Jul; 14(14):4640-9. PubMed ID: 18628479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth.
    Jossin Y; Goffinet AM
    Mol Cell Biol; 2007 Oct; 27(20):7113-24. PubMed ID: 17698586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KAI1/CD82 decreases Rac1 expression and cell proliferation through PI3K/Akt/mTOR pathway in H1299 lung carcinoma cells.
    Choi UJ; Jee BK; Lim Y; Lee KH
    Cell Biochem Funct; 2009 Jan; 27(1):40-7. PubMed ID: 19107873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signaling control of mRNA translation in cancer pathogenesis.
    Holland EC; Sonenberg N; Pandolfi PP; Thomas G
    Oncogene; 2004 Apr; 23(18):3138-44. PubMed ID: 15094763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth suppressive cytokines and the AKT/mTOR pathway.
    Kroczynska B; Kaur S; Platanias LC
    Cytokine; 2009; 48(1-2):138-43. PubMed ID: 19682919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translation initiation: a critical signalling node in cancer.
    Robert F; Pelletier J
    Expert Opin Ther Targets; 2009 Nov; 13(11):1279-93. PubMed ID: 19705976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for studying signal-dependent regulation of translation factor activity.
    Wang X; Proud CG
    Methods Enzymol; 2007; 431():113-42. PubMed ID: 17923233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silibinin inhibits hypoxia-inducible factor-1alpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy.
    GarcĂ­a-Maceira P; Mateo J
    Oncogene; 2009 Jan; 28(3):313-24. PubMed ID: 18978810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-leucine increases [3H]-thymidine incorporation in chicken hepatocytes: involvement of the PKC, PI3K/Akt, ERK1/2, and mTOR signaling pathways.
    Lee MY; Jo SD; Lee JH; Han HJ
    J Cell Biochem; 2008 Dec; 105(6):1410-9. PubMed ID: 18980246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upstream and downstream of mTOR.
    Hay N; Sonenberg N
    Genes Dev; 2004 Aug; 18(16):1926-45. PubMed ID: 15314020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size.
    Ruvinsky I; Meyuhas O
    Trends Biochem Sci; 2006 Jun; 31(6):342-8. PubMed ID: 16679021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.