BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 17042484)

  • 1. A hyperthermophilic protein acquires function at the cost of stability.
    Mukaiyama A; Haruki M; Ota M; Koga Y; Takano K; Kanaya S
    Biochemistry; 2006 Oct; 45(42):12673-9. PubMed ID: 17042484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetically robust monomeric protein from a hyperthermophile.
    Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic effect on the stability and folding of a hyperthermophilic protein.
    Dong H; Mukaiyama A; Tadokoro T; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2008 Apr; 378(1):264-72. PubMed ID: 18353366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmolyte effect on the stability and folding of a hyperthermophilic protein.
    Mukaiyama A; Koga Y; Takano K; Kanaya S
    Proteins; 2008 Apr; 71(1):110-8. PubMed ID: 17932924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural, thermodynamic, and mutational analyses of a psychrotrophic RNase HI.
    Tadokoro T; You DJ; Abe Y; Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    Biochemistry; 2007 Jun; 46(25):7460-8. PubMed ID: 17536836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proline effect on the thermostability and slow unfolding of a hyperthermophilic protein.
    Takano K; Higashi R; Okada J; Mukaiyama A; Tadokoro T; Koga Y; Kanaya S
    J Biochem; 2009 Jan; 145(1):79-85. PubMed ID: 18977771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkable stabilization of a psychrotrophic RNase HI by a combination of thermostabilizing mutations identified by the suppressor mutation method.
    Tadokoro T; Matsushita K; Abe Y; Rohman MS; Koga Y; Takano K; Kanaya S
    Biochemistry; 2008 Aug; 47(31):8040-7. PubMed ID: 18616283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic and structural characterization of type II isopentenyl diphosphate isomerase from hyperthermophilic archaeon Thermococcus kodakaraensis.
    Siddiqui MA; Yamanaka A; Hirooka K; Bamaba T; Kobayashi A; Imanaka T; Fukusaki E; Fujiwara S
    Biochem Biophys Res Commun; 2005 Jun; 331(4):1127-36. PubMed ID: 15882994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of amyloid beta fragments in aqueous environments.
    Takano K; Endo S; Mukaiyama A; Chon H; Matsumura H; Koga Y; Kanaya S
    FEBS J; 2006 Jan; 273(1):150-8. PubMed ID: 16367755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability for function trade-offs in the enolase superfamily "catalytic module".
    Nagatani RA; Gonzalez A; Shoichet BK; Brinen LS; Babbitt PC
    Biochemistry; 2007 Jun; 46(23):6688-95. PubMed ID: 17503785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cavity-creating mutations on conformational stability and structure of the dimeric 4-alpha-helical protein ROP: thermal unfolding studies.
    Steif C; Hinz HJ; Cesareni G
    Proteins; 1995 Sep; 23(1):83-96. PubMed ID: 8539253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the N-terminal region for the conformational stability of esterase 2 from Alicyclobacillus acidocaldarius.
    Foglia F; Mandrich L; Pezzullo M; Graziano G; Barone G; Rossi M; Manco G; Del Vecchio P
    Biophys Chem; 2007 Apr; 127(1-2):113-22. PubMed ID: 17289253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal ion binding and enzymatic mechanism of Methanococcus jannaschii RNase HII.
    Lai B; Li Y; Cao A; Lai L
    Biochemistry; 2003 Jan; 42(3):785-91. PubMed ID: 12534291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium and kinetic stability of a hyperthermophilic protein, O6-methylguanine-DNA methyltransferase under various extreme conditions.
    Nishikori S; Shiraki K; Okanojo M; Imanaka T; Takagi M
    J Biochem; 2004 Oct; 136(4):503-8. PubMed ID: 15625320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of type 1 ribonuclease H from hyperthermophilic archaeon Sulfolobus tokodaii: role of arginine 118 and C-terminal anchoring.
    You DJ; Chon H; Koga Y; Takano K; Kanaya S
    Biochemistry; 2007 Oct; 46(41):11494-503. PubMed ID: 17892305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confirmation of the hierarchical folding of RNase H: a protein engineering study.
    Raschke TM; Kho J; Marqusee S
    Nat Struct Biol; 1999 Sep; 6(9):825-31. PubMed ID: 10467093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of highly thermostable glycerol kinase from a hyperthermophilic archaeon in a dimeric form.
    Koga Y; Katsumi R; You DJ; Matsumura H; Takano K; Kanaya S
    FEBS J; 2008 May; 275(10):2632-43. PubMed ID: 18422647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro heat effect on functional and conformational changes of cyclodextrin glucanotransferase from hyperthermophilic archaea.
    Yamamoto T; Shiraki K; Fujiwara S; Takagi M; Fukui K; Imanaka T
    Biochem Biophys Res Commun; 1999 Nov; 265(1):57-61. PubMed ID: 10548490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of E. coli Ribonuclease HI by the 'stability profile of mutant protein' (SPMP)-inspired random and non-random mutagenesis.
    Haruki M; Saito Y; Ota M; Nishikawa K; Kanaya S
    J Biotechnol; 2006 Jul; 124(3):512-22. PubMed ID: 16545882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution of Tk-subtilisin from a hyperthermophilic archaeon: identification of a single amino acid substitution responsible for low-temperature adaptation.
    Pulido MA; Koga Y; Takano K; Kanaya S
    Protein Eng Des Sel; 2007 Mar; 20(3):143-53. PubMed ID: 17351019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.