These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 17042490)

  • 1. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase.
    Ye M; English AM
    Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide dismutase targets NO from GSNO to Cysbeta93 of oxyhemoglobin in concentrated but not dilute solutions of the protein.
    Romeo AA; Capobianco JA; English AM
    J Am Chem Soc; 2003 Nov; 125(47):14370-8. PubMed ID: 14624585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of superoxide dismutase/H(2)O(2)-mediated nitric oxide release from S-nitrosoglutathione--role of glutamate.
    Singh RJ; Hogg N; Goss SP; Antholine WE; Kalyanaraman B
    Arch Biochem Biophys; 1999 Dec; 372(1):8-15. PubMed ID: 10562411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of S-nitrosation of recombinant human brain calbindin D28K.
    Tao L; English AM
    Biochemistry; 2003 Mar; 42(11):3326-34. PubMed ID: 12641465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione.
    Tao L; English AM
    Biochemistry; 2004 Apr; 43(13):4028-38. PubMed ID: 15049710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of superoxide dismutase on the stability of S-nitrosothiols.
    Jourd'heuil D; Laroux FS; Miles AM; Wink DA; Grisham MB
    Arch Biochem Biophys; 1999 Jan; 361(2):323-30. PubMed ID: 9882463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single mutations at the subunit interface modulate copper reactivity in Photobacterium leiognathi Cu,Zn superoxide dismutase.
    Stroppolo ME; Pesce A; D'Orazio M; O'Neill P; Bordo D; Rosano C; Milani M; Battistoni A; Bolognesi M; Desideri A
    J Mol Biol; 2001 May; 308(3):555-63. PubMed ID: 11327787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T
    J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA cleavage mediated by copper superoxide dismutase via two pathways.
    Han Y; Shen T; Jiang W; Xia Q; Liu C
    J Inorg Biochem; 2007 Feb; 101(2):214-24. PubMed ID: 17070914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal ion chelating peptides with superoxide dismutase activity.
    Fisher AE; Naughton DP
    Biomed Pharmacother; 2005 May; 59(4):158-62. PubMed ID: 15862709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated CuZn-SOD-mediated oxidation and reduction in the presence of hydrogen peroxide.
    Johnson MA; Macdonald TL
    Biochem Biophys Res Commun; 2004 Nov; 324(1):446-50. PubMed ID: 15465039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Putative denitrosylase activity of Cu,Zn-superoxide dismutase.
    Okado-Matsumoto A; Fridovich I
    Free Radic Biol Med; 2007 Sep; 43(5):830-6. PubMed ID: 17664146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic superoxide scavenging by metal complexes of the calcium chelator EGTA and contrast agent EHPG.
    Fisher AE; Hague TA; Clarke CL; Naughton DP
    Biochem Biophys Res Commun; 2004 Oct; 323(1):163-7. PubMed ID: 15351716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipophilic ionophore complexes as superoxide dismutase mimetics.
    Fisher AE; Lau G; Naughton DP
    Biochem Biophys Res Commun; 2005 Apr; 329(3):930-3. PubMed ID: 15752745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, structure, and activity of supramolecular mimics for the active site and arg141 residue of copper, zinc-superoxide dismutase.
    Zhou YH; Fu H; Zhao WX; Chen WL; Su CY; Sun H; Ji LN; Mao ZW
    Inorg Chem; 2007 Feb; 46(3):734-9. PubMed ID: 17257014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallographic structures of bovine copper-zinc superoxide dismutase reveal asymmetry in two subunits: functionally important three and five coordinate copper sites captured in the same crystal.
    Hough MA; Hasnain SS
    J Mol Biol; 1999 Apr; 287(3):579-92. PubMed ID: 10092461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of activity, but no decrease in concentration, of erythrocyte Cu,Zn-superoxide dismutase by hyperglycaemia in diabetic patients.
    Kotake M; Shinohara R; Kato K; Hayakawa N; Hayashi R; Uchimura K; Makino M; Nagata M; Kakizawa H; Nakagawa H; Nagasaka A; Itoh M
    Diabet Med; 1998 Aug; 15(8):668-71. PubMed ID: 9702470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic and structural role of a metal-free histidine residue in bovine Cu-Zn superoxide dismutase.
    Toyama A; Takahashi Y; Takeuchi H
    Biochemistry; 2004 Apr; 43(16):4670-9. PubMed ID: 15096035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic properties of Cu,Zn-superoxide dismutase as a function of metal content--order restored.
    Goldstein S; Fridovich I; Czapski G
    Free Radic Biol Med; 2006 Sep; 41(6):937-41. PubMed ID: 16934676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structure-based mechanism for copper-zinc superoxide dismutase.
    Hart PJ; Balbirnie MM; Ogihara NL; Nersissian AM; Weiss MS; Valentine JS; Eisenberg D
    Biochemistry; 1999 Feb; 38(7):2167-78. PubMed ID: 10026301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.