These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 17042536)

  • 21. Nanobubbles and micropancakes: gaseous domains on immersed substrates.
    Seddon JR; Lohse D
    J Phys Condens Matter; 2011 Apr; 23(13):133001. PubMed ID: 21415481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of surface modification on interfacial nanobubble morphology and contact line tension.
    Rangharajan KK; Kwak KJ; Conlisk AT; Wu Y; Prakash S
    Soft Matter; 2015 Jul; 11(26):5214-23. PubMed ID: 26041331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metastable nanobubbles at the solid-liquid interface due to contact angle hysteresis.
    Nishiyama T; Yamada Y; Ikuta T; Takahashi K; Takata Y
    Langmuir; 2015 Jan; 31(3):982-6. PubMed ID: 25540821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dimensions and the profile of surface nanobubbles: tip-nanobubble interactions and nanobubble deformation in atomic force microscopy.
    Walczyk W; Schönherr H
    Langmuir; 2014 Oct; 30(40):11955-65. PubMed ID: 25222759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of degassing on the long-range attractive force between hydrophobic surfaces in water.
    Stevens H; Considine RF; Drummond CJ; Hayes RA; Attard P
    Langmuir; 2005 Jul; 21(14):6399-405. PubMed ID: 15982047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media.
    Janda P; Frank O; Bastl Z; Klementová M; Tarábková H; Kavan L
    Nanotechnology; 2010 Mar; 21(9):095707. PubMed ID: 20139490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contact angles of surface nanobubbles on mixed self-assembled monolayers with systematically varied macroscopic wettability by atomic force microscopy.
    Song B; Walczyk W; Schönherr H
    Langmuir; 2011 Jul; 27(13):8223-32. PubMed ID: 21663323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanobubble formation on a warmer substrate.
    Xu C; Peng S; Qiao GG; Gutowski V; Lohse D; Zhang X
    Soft Matter; 2014 Oct; 10(39):7857-64. PubMed ID: 25156822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bovine serum albumin film as a template for controlled nanopancake and nanobubble formation: in situ atomic force microscopy and nanolithography study.
    Kolivoška V; Gál M; Hromadová M; Lachmanová S; Tarábková H; Janda P; Pospíšil L; Turoňová AM
    Colloids Surf B Biointerfaces; 2012 Jun; 94():213-9. PubMed ID: 22341519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Particle tracking around surface nanobubbles.
    Dietrich E; Zandvliet HJ; Lohse D; Seddon JR
    J Phys Condens Matter; 2013 May; 25(18):184009. PubMed ID: 23598947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrolytically generated nanobubbles on highly orientated pyrolytic graphite surfaces.
    Yang S; Tsai P; Kooij ES; Prosperetti A; Zandvliet HJ; Lohse D
    Langmuir; 2009 Feb; 25(3):1466-74. PubMed ID: 19123858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-scale molecular-dynamics simulation of nanoscale hydrophobic interaction and nanobubble formation.
    Koishi T; Yasuoka K; Ebisuzaki T; Yoo S; Zeng XC
    J Chem Phys; 2005 Nov; 123(20):204707. PubMed ID: 16351293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of nanoparticles from plain and patterned surfaces using nanobubbles.
    Yang S; Duisterwinkel A
    Langmuir; 2011 Sep; 27(18):11430-5. PubMed ID: 21806003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacial gas nanobubbles or oil nanodroplets?
    Wang X; Zhao B; Hu J; Wang S; Tai R; Gao X; Zhang L
    Phys Chem Chem Phys; 2017 Jan; 19(2):1108-1114. PubMed ID: 27942625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coarse-grained modelling of surface nanobubbles.
    Grosfils P
    J Phys Condens Matter; 2013 May; 25(18):184006. PubMed ID: 23598798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attractive forces between hydrophobic solid surfaces measured by AFM on the first approach in salt solutions and in the presence of dissolved gases.
    Azadi M; Nguyen AV; Yakubov GE
    Langmuir; 2015 Feb; 31(6):1941-9. PubMed ID: 25627159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation on the temperature difference method for producing nanobubbles and their physical properties.
    Guan M; Guo W; Gao L; Tang Y; Hu J; Dong Y
    Chemphyschem; 2012 Jun; 13(8):2115-8. PubMed ID: 22505224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction and dynamics of ambient water adlayers on graphite probed using AFM voltage nanolithography and electrostatic force microscopy.
    Gowthami T; Kurra N; Raina G
    Nanotechnology; 2014 Apr; 25(15):155304. PubMed ID: 24651210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanobubbles and their role in slip and drag.
    Maali A; Bhushan B
    J Phys Condens Matter; 2013 May; 25(18):184003. PubMed ID: 23598711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The relationship between nanobubbles and the hydrophobic force.
    Palmer LA; Cookson D; Lamb RN
    Langmuir; 2011 Jan; 27(1):144-7. PubMed ID: 21141975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.