BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 17042554)

  • 1. A test of the transition-metal nanocluster formation and stabilization ability of the most common polymeric stabilizer, poly(vinylpyrrolidone), as well as four other polymeric protectants.
    Ott LS; Hornstein BJ; Finke RG
    Langmuir; 2006 Oct; 22(22):9357-67. PubMed ID: 17042554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocluster formation and stabilization fundamental studies: investigating "solvent-only" stabilization en route to discovering stabilization by the traditionally weakly coordinating anion BF4- plus high dielectric constant solvents.
    Ott LS; Finke RG
    Inorg Chem; 2006 Oct; 45(20):8382-93. PubMed ID: 16999438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ranking the lacunary (Bu4N)9[H[alpha2-P2W17O61]] polyoxometalate's stabilizing ability for Ir(0)(n) nanocluster formation and stabilization using the five-criteria method plus necessary control experiments.
    Graham CR; Ott LS; Finke RG
    Langmuir; 2009 Feb; 25(3):1327-36. PubMed ID: 19133735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocluster formation and stabilization fundamental studies: ranking the nanocluster stabilizing ability of halides.
    Ott LS; Cline ML; Finke RG
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2400-10. PubMed ID: 17663259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that imidazolium-based ionic ligands can be metal(0)/nanocluster catalyst poisons in at least the test case of iridium(0)-catalyzed acetone hydrogenation.
    Ott LS; Campbell S; Seddon KR; Finke RG
    Inorg Chem; 2007 Nov; 46(24):10335-44. PubMed ID: 17975891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supersensitivity of transition-metal nanoparticle formation to initial precursor concentration and reaction temperature: understanding its origins.
    Ott LS; Finke RG
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1551-6. PubMed ID: 18468189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development plus kinetic and mechanistic studies of a prototype supported-nanoparticle heterogeneous catalyst formation system in contact with solution: Ir(1,5-COD)Cl/gamma-Al2O3 and its reduction by H2 to Ir(0)n/gamma-Al2O3.
    Mondloch JE; Wang Q; Frenkel AI; Finke RG
    J Am Chem Soc; 2010 Jul; 132(28):9701-14. PubMed ID: 20575521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ-generated PVP-stabilized palladium(0) nanocluster catalyst in hydrogen generation from the methanolysis of ammonia-borane.
    Erdoğan H; Metin O; Ozkar S
    Phys Chem Chem Phys; 2009 Nov; 11(44):10519-25. PubMed ID: 19890540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoclusters in ionic liquids: evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by (2)H NMR.
    Ott LS; Cline ML; Deetlefs M; Seddon KR; Finke RG
    J Am Chem Soc; 2005 Apr; 127(16):5758-9. PubMed ID: 15839652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocluster formation and stabilization fundamental studies: ranking commonly employed anionic stabilizers via the development, then application, of five comparative criteria.
    Ozkar S; Finke RG
    J Am Chem Soc; 2002 May; 124(20):5796-810. PubMed ID: 12010055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis.
    Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Özkar S; Yih KH; Johnson KA; Finke RG
    Langmuir; 2011 May; 27(10):6279-94. PubMed ID: 21480617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition-metal nanocluster size vs formation time and the catalytically effective nucleus number: a mechanism-based treatment.
    Watzky MA; Finney EE; Finke RG
    J Am Chem Soc; 2008 Sep; 130(36):11959-69. PubMed ID: 18707099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the organic solvent on the formation and stabilization of CdS and PbS nanoclusters.
    Babu KS; Kumar TR; Haridoss P; Vijayan C
    Talanta; 2005 Mar; 66(1):160-5. PubMed ID: 18969976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruthenium(0) nanoclusters stabilized by a Nanozeolite framework: isolable, reusable, and green catalyst for the hydrogenation of neat aromatics under mild conditions with the unprecedented catalytic activity and lifetime.
    Zahmakiran M; Tonbul Y; Ozkar S
    J Am Chem Soc; 2010 May; 132(18):6541-9. PubMed ID: 20405831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters.
    Finney EE; Finke RG
    J Colloid Interface Sci; 2008 Jan; 317(2):351-74. PubMed ID: 18028940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iridium(0) nanocluster, acid-assisted catalysis of neat acetone hydrogenation at room temperature: exceptional activity, catalyst lifetime, and selectivity at complete conversion.
    Ozkar S; Finke RG
    J Am Chem Soc; 2005 Apr; 127(13):4800-8. PubMed ID: 15796546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisole hydrogenation with well-characterized polyoxoanion- and tetrabutylammonium-stabilized Rh(0) nanoclusters: effects of added water and acid, plus enhanced catalytic rate, lifetime, and partial hydrogenation selectivity.
    Widegren JA; Finke RG
    Inorg Chem; 2002 Mar; 41(6):1558-72. PubMed ID: 11896725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyoxotungstate stabilized palladium, gold, and silver nanoclusters: a study of cluster stability, catalysis, and effects of the stabilizing anions.
    D'Souza L; Noeske M; Richards RM; Kortz U
    J Colloid Interface Sci; 2013 Mar; 394():157-65. PubMed ID: 23375809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iridium Ziegler-type hydrogenation catalysts made from [(1,5-COD)Ir(mu-O2C8H15)](2) and AlEt3: spectroscopic and kinetic evidence for the Ir(n) species present and for nanoparticles as the fastest catalyst.
    Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Ozkar S; Johnson KA; Finke RG
    Inorg Chem; 2010 Sep; 49(17):8131-47. PubMed ID: 20681520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.