These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Nanoscale molecular transport: the case of dip-pen nanolithography. Giam LR; Wang Y; Mirkin CA J Phys Chem A; 2009 Apr; 113(16):3779-82. PubMed ID: 19209881 [TBL] [Abstract][Full Text] [Related]
4. A diffusive ink transport model for lipid dip-pen nanolithography. Urtizberea A; Hirtz M Nanoscale; 2015 Oct; 7(38):15618-34. PubMed ID: 26267408 [TBL] [Abstract][Full Text] [Related]
5. Transport rates vary with deposition time in dip-pen nanolithography. Hampton JR; Dameron AA; Weiss PS J Phys Chem B; 2005 Dec; 109(49):23118-20. PubMed ID: 16375269 [TBL] [Abstract][Full Text] [Related]
6. Molecular simulation of the water meniscus in dip-pen nanolithography. Kim H; Saha LC; Saha JK; Jang J Scanning; 2010; 32(1):2-8. PubMed ID: 19787663 [TBL] [Abstract][Full Text] [Related]
8. "Dip-Pen" nanolithography on semiconductor surfaces. Ivanisevic A; Mirkin CA J Am Chem Soc; 2001 Aug; 123(32):7887-9. PubMed ID: 11493062 [TBL] [Abstract][Full Text] [Related]
9. Effects of humidity and temperature on laser-assisted dip-pen nanolithography array using molecular dynamics simulations. Wu CD; Fang TH; Wu TT J Colloid Interface Sci; 2012 Apr; 372(1):170-5. PubMed ID: 22326230 [TBL] [Abstract][Full Text] [Related]
10. The Role of Liquid Ink Transport in the Direct Placement of Quantum Dot Emitters onto Sub-Micrometer Antennas by Dip-Pen Nanolithography. Dawood F; Wang J; Schulze PA; Sheehan CJ; Buck MR; Dennis AM; Majumder S; Krishnamurthy S; Ticknor M; Staude I; Brener I; Goodwin PM; Amro NA; Hollingsworth JA Small; 2018 Jun; ():e1801503. PubMed ID: 29952107 [TBL] [Abstract][Full Text] [Related]
12. Multi-ink pattern generation by dip-pen nanolithography. Jang JW; Smetana A; Stiles P Scanning; 2010; 32(1):24-9. PubMed ID: 20069632 [TBL] [Abstract][Full Text] [Related]
13. Comparative sessile drop and dip pen nanolithography investigation for various hydrophilic ink/surface systems. Yadav PK; Lemoine P J Nanosci Nanotechnol; 2012 Jan; 12(1):60-7. PubMed ID: 22523946 [TBL] [Abstract][Full Text] [Related]
14. Dependence of transport rate on area of lithography and pretreatment of tip in dip-pen nanolithography. Wu TH; Lu HH; Lin CW Langmuir; 2012 Oct; 28(41):14509-13. PubMed ID: 23020585 [TBL] [Abstract][Full Text] [Related]
15. Liquid ink deposition from an atomic force microscope tip: deposition monitoring and control of feature size. O'Connell CD; Higgins MJ; Marusic D; Moulton SE; Wallace GG Langmuir; 2014 Mar; 30(10):2712-21. PubMed ID: 24548246 [TBL] [Abstract][Full Text] [Related]
16. The role of viscosity on polymer ink transport in dip-pen nanolithography. Liu G; Zhou Y; Banga RS; Boya R; Brown KA; Chipre AJ; Nguyen ST; Mirkin CA Chem Sci; 2013 May; 4(5):2093-2099. PubMed ID: 23641313 [TBL] [Abstract][Full Text] [Related]
17. Temperature controlled dip-pen nanolithography. Sanedrin RG; Amro NA; Rendlen J; Nelson M Nanotechnology; 2010 Mar; 21(11):115302. PubMed ID: 20173229 [TBL] [Abstract][Full Text] [Related]
18. Effect of chain length of self-assembled monolayers in dip-pen nanolithography using molecular dynamics simulations. Wu CD; Fang TH; Lin JF J Colloid Interface Sci; 2011 Sep; 361(1):316-20. PubMed ID: 21658704 [TBL] [Abstract][Full Text] [Related]