These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17042742)

  • 21. Structural, physicochemical and dynamic features conserved within the aerolysin pore-forming toxin family.
    Cirauqui N; Abriata LA; van der Goot FG; Dal Peraro M
    Sci Rep; 2017 Oct; 7(1):13932. PubMed ID: 29066778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cryo-EM elucidates mechanism of action of bacterial pore-forming toxins.
    Mondal AK; Lata K; Singh M; Chatterjee S; Chauhan A; Puravankara S; Chattopadhyay K
    Biochim Biophys Acta Biomembr; 2022 Nov; 1864(11):184013. PubMed ID: 35908609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial protein toxins penetrate cells via a four-step mechanism.
    Montecucco C; Papini E; Schiavo G
    FEBS Lett; 1994 Jun; 346(1):92-8. PubMed ID: 8206166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of protein-glycolipid recognition at the membrane bilayer.
    Evans SV; Roger MacKenzie C
    J Mol Recognit; 1999; 12(3):155-68. PubMed ID: 10398406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glycosphingolipids as toxin receptors.
    Smith DC; Lord JM; Roberts LM; Johannes L
    Semin Cell Dev Biol; 2004 Aug; 15(4):397-408. PubMed ID: 15207830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular features of the cytolytic pore-forming bacterial protein toxins.
    Alouf JE
    Folia Microbiol (Praha); 2003; 48(1):5-16. PubMed ID: 12744072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival.
    Gurcel L; Abrami L; Girardin S; Tschopp J; van der Goot FG
    Cell; 2006 Sep; 126(6):1135-45. PubMed ID: 16990137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial oligomerization of pyolysin induced by a disulfide-tethered mutant.
    Pokrajac L; Baik C; Harris JR; Sarraf NS; Palmer M
    Biochem Cell Biol; 2012 Dec; 90(6):709-17. PubMed ID: 23016571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function.
    Jank T; Giesemann T; Aktories K
    Glycobiology; 2007 Apr; 17(4):15R-22R. PubMed ID: 17237138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion.
    Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A
    Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa.
    Faudry E; Vernier G; Neumann E; Forge V; Attree I
    Biochemistry; 2006 Jul; 45(26):8117-23. PubMed ID: 16800636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; Gariépy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalyzing the translocation of polypeptides through attractive interactions.
    Wolfe AJ; Mohammad MM; Cheley S; Bayley H; Movileanu L
    J Am Chem Soc; 2007 Nov; 129(45):14034-41. PubMed ID: 17949000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Molecular mechanism of AB5 toxin A-subunit translocation into the target cells].
    Noskov AN
    Bioorg Khim; 2013; 39(6):671-9. PubMed ID: 25696929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholesterol catalyzes unfolding in membrane-inserted motifs of the pore forming protein cytolysin A.
    Kulshrestha A; Punnathanam SN; Roy R; Ayappa KG
    Biophys J; 2023 Oct; 122(20):4068-4081. PubMed ID: 37740492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholesterol specificity of some heptameric beta-barrel pore-forming bacterial toxins: structural and functional aspects.
    Harris JR; Palmer M
    Subcell Biochem; 2010; 51():579-96. PubMed ID: 20213559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Super-resolution Stimulated Emission Depletion-Fluorescence Correlation Spectroscopy Reveals Nanoscale Membrane Reorganization Induced by Pore-Forming Proteins.
    Sarangi NK; P II; Ayappa KG; Visweswariah SS; Basu JK
    Langmuir; 2016 Sep; 32(37):9649-57. PubMed ID: 27564541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin.
    Finkelstein A
    J Physiol (Paris); 1990; 84(2):188-90. PubMed ID: 1705290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of a Tc holotoxin pore provides insights into the translocation mechanism.
    Roderer D; Hofnagel O; Benz R; Raunser S
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23083-23090. PubMed ID: 31666324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution.
    Popoff MR
    Toxins (Basel); 2024 Apr; 16(4):. PubMed ID: 38668607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.