These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 17043085)
21. Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Thatcher LF; Manners JM; Kazan K Plant J; 2009 Jun; 58(6):927-39. PubMed ID: 19220788 [TBL] [Abstract][Full Text] [Related]
22. An important role of a BAHD acyl transferase-like protein in plant innate immunity. Zheng Z; Qualley A; Fan B; Dudareva N; Chen Z Plant J; 2009 Mar; 57(6):1040-53. PubMed ID: 19036031 [TBL] [Abstract][Full Text] [Related]
23. Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata. Kivimäki M; Kärkkäinen K; Gaudeul M; Løe G; Agren J Mol Ecol; 2007 Jan; 16(2):453-62. PubMed ID: 17217357 [TBL] [Abstract][Full Text] [Related]
24. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Segmüller N; Kokkelink L; Giesbert S; Odinius D; van Kan J; Tudzynski P Mol Plant Microbe Interact; 2008 Jun; 21(6):808-19. PubMed ID: 18624644 [TBL] [Abstract][Full Text] [Related]
26. Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. Wang W; Devoto A; Turner JG; Xiao S Mol Plant Microbe Interact; 2007 Aug; 20(8):966-76. PubMed ID: 17722700 [TBL] [Abstract][Full Text] [Related]
27. A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Zhang Z; Feechan A; Pedersen C; Newman MA; Qiu JL; Olesen KL; Thordal-Christensen H Plant J; 2007 Jan; 49(2):302-12. PubMed ID: 17241452 [TBL] [Abstract][Full Text] [Related]
28. A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. Esch JJ; Chen M; Sanders M; Hillestad M; Ndkium S; Idelkope B; Neizer J; Marks MD Development; 2003 Dec; 130(24):5885-94. PubMed ID: 14561633 [TBL] [Abstract][Full Text] [Related]
29. A dual role for plant quinone reductases in host-fungus interaction. Heyno E; Alkan N; Fluhr R Physiol Plant; 2013 Nov; 149(3):340-53. PubMed ID: 23464356 [TBL] [Abstract][Full Text] [Related]
30. The glyoxylate cycle is involved in pleotropic phenotypes, antagonism and induction of plant defence responses in the fungal biocontrol agent Trichoderma atroviride. Dubey MK; Broberg A; Sooriyaarachchi S; Ubhayasekera W; Jensen DF; Karlsson M Fungal Genet Biol; 2013; 58-59():33-41. PubMed ID: 23850601 [TBL] [Abstract][Full Text] [Related]
31. Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Denby KJ; Kumar P; Kliebenstein DJ Plant J; 2004 May; 38(3):473-86. PubMed ID: 15086796 [TBL] [Abstract][Full Text] [Related]
32. Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Cheng CH; Yang CA; Peng KC Phytopathology; 2012 Nov; 102(11):1054-63. PubMed ID: 22734558 [TBL] [Abstract][Full Text] [Related]
33. RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Staal J; Kaliff M; Dewaele E; Persson M; Dixelius C Plant J; 2008 Jul; 55(2):188-200. PubMed ID: 18397376 [TBL] [Abstract][Full Text] [Related]
34. The Arabidopsis gain-of-function mutant ssi4 requires RAR1 and SGT1b differentially for defense activation and morphological alterations. Zhou F; Mosher S; Tian M; Sassi G; Parker J; Klessig DF Mol Plant Microbe Interact; 2008 Jan; 21(1):40-9. PubMed ID: 18052881 [TBL] [Abstract][Full Text] [Related]
35. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. Choquer M; Fournier E; Kunz C; Levis C; Pradier JM; Simon A; Viaud M FEMS Microbiol Lett; 2007 Dec; 277(1):1-10. PubMed ID: 17986079 [TBL] [Abstract][Full Text] [Related]
36. The hyper-fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid: UDPG glucosyltransferase. Sinlapadech T; Stout J; Ruegger MO; Deak M; Chapple C Plant J; 2007 Feb; 49(4):655-68. PubMed ID: 17217457 [TBL] [Abstract][Full Text] [Related]
37. The LysM receptor-like kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in Arabidopsis plants. Brotman Y; Landau U; Pnini S; Lisec J; Balazadeh S; Mueller-Roeber B; Zilberstein A; Willmitzer L; Chet I; Viterbo A Mol Plant; 2012 Sep; 5(5):1113-24. PubMed ID: 22461667 [TBL] [Abstract][Full Text] [Related]
38. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Zhao M; Morohashi K; Hatlestad G; Grotewold E; Lloyd A Development; 2008 Jun; 135(11):1991-9. PubMed ID: 18434419 [TBL] [Abstract][Full Text] [Related]
39. The ERECTA Receptor-Like Kinase Regulates Cell Wall-Mediated Resistance to Pathogens in Arabidopsis thaliana. Sánchez-Rodríguez C; Estévez JM; Llorente F; Hernández-Blanco C; Jordá L; Pagán I; Berrocal M; Marco Y; Somerville S; Molina A Mol Plant Microbe Interact; 2009 Aug; 22(8):953-63. PubMed ID: 19589071 [TBL] [Abstract][Full Text] [Related]
40. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Mishina TE; Zeier J Plant J; 2007 May; 50(3):500-13. PubMed ID: 17419843 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]