These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 17043221)
1. Unusual mechanical stability of a minimal RNA kissing complex. Li PT; Bustamante C; Tinoco I Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15847-52. PubMed ID: 17043221 [TBL] [Abstract][Full Text] [Related]
2. Analysis of diffuse K+ and Mg2+ ion binding to a two-base-pair kissing complex by single-molecule mechanical unfolding. Li PT Biochemistry; 2013 Jul; 52(29):4991-5001. PubMed ID: 23842027 [TBL] [Abstract][Full Text] [Related]
3. Mechanical unfolding of two DIS RNA kissing complexes from HIV-1. Li PT; Tinoco I J Mol Biol; 2009 Mar; 386(5):1343-56. PubMed ID: 19452632 [TBL] [Abstract][Full Text] [Related]
4. The essential role of stacking adenines in a two-base-pair RNA kissing complex. Stephenson W; Asare-Okai PN; Chen AA; Keller S; Santiago R; Tenenbaum SA; Garcia AE; Fabris D; Li PT J Am Chem Soc; 2013 Apr; 135(15):5602-11. PubMed ID: 23517345 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the mechanical unfolding of RNA pseudoknots. Green L; Kim CH; Bustamante C; Tinoco I J Mol Biol; 2008 Jan; 375(2):511-28. PubMed ID: 18021801 [TBL] [Abstract][Full Text] [Related]
6. Single-Molecule Mechanical Folding and Unfolding of RNA Hairpins: Effects of Single A-U to A·C Pair Substitutions and Single Proton Binding and Implications for mRNA Structure-Induced -1 Ribosomal Frameshifting. Yang L; Zhong Z; Tong C; Jia H; Liu Y; Chen G J Am Chem Soc; 2018 Jul; 140(26):8172-8184. PubMed ID: 29884019 [TBL] [Abstract][Full Text] [Related]
7. Effect of helix stability on the formation of loop-loop complexes. Sehdev P; Crews G; Soto AM Biochemistry; 2012 Dec; 51(48):9612-23. PubMed ID: 23094588 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of enhanced mechanical stability of a minimal RNA kissing complex elucidated by nonequilibrium molecular dynamics simulations. Chen AA; García AE Proc Natl Acad Sci U S A; 2012 Jun; 109(24):E1530-9. PubMed ID: 22623526 [TBL] [Abstract][Full Text] [Related]
9. A new computational approach for mechanical folding kinetics of RNA hairpins. Cao S; Chen SJ Biophys J; 2009 May; 96(10):4024-34. PubMed ID: 19450474 [TBL] [Abstract][Full Text] [Related]
10. Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA. Chen G; Wen JD; Tinoco I RNA; 2007 Dec; 13(12):2175-88. PubMed ID: 17959928 [TBL] [Abstract][Full Text] [Related]
16. On the conformational stability of the smallest RNA kissing complexes maintained through two G·C base pairs. Chu W; Weerasekera A; Kim CH Biochem Biophys Res Commun; 2017 Jan; 483(1):39-44. PubMed ID: 28063925 [TBL] [Abstract][Full Text] [Related]
17. Mechanical unfolding of RNA: from hairpins to structures with internal multiloops. Hyeon C; Thirumalai D Biophys J; 2007 Feb; 92(3):731-43. PubMed ID: 17028142 [TBL] [Abstract][Full Text] [Related]
18. Exploring the complex folding kinetics of RNA hairpins: II. Effect of sequence, length, and misfolded states. Zhang W; Chen SJ Biophys J; 2006 Feb; 90(3):778-87. PubMed ID: 16272439 [TBL] [Abstract][Full Text] [Related]
19. Nanomanipulation of single RNA molecules by optical tweezers. Stephenson W; Wan G; Tenenbaum SA; Li PT J Vis Exp; 2014 Aug; (90):. PubMed ID: 25177917 [TBL] [Abstract][Full Text] [Related]
20. Forced-unfolding and force-quench refolding of RNA hairpins. Hyeon C; Thirumalai D Biophys J; 2006 May; 90(10):3410-27. PubMed ID: 16473903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]