These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17043222)

  • 1. A rapid genome-scale response of the transcriptional oscillator to perturbation reveals a period-doubling path to phenotypic change.
    Li CM; Klevecz RR
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16254-9. PubMed ID: 17043222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the clock from yeast to man by period-doubling folds in the cellular oscillator.
    Klevecz RR; Li CM
    Cold Spring Harb Symp Quant Biol; 2007; 72():421-9. PubMed ID: 18419300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome wide oscillations in expression. Wavelet analysis of time series data from yeast expression arrays uncovers the dynamic architecture of phenotype.
    Klevecz RR; Murray DB
    Mol Biol Rep; 2001; 28(2):73-82. PubMed ID: 11931391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective behavior in gene regulation: the cell is an oscillator, the cell cycle a developmental process.
    Klevecz RR; Li CM; Marcus I; Frankel PH
    FEBS J; 2008 May; 275(10):2372-84. PubMed ID: 18410382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of oscillatory phenotypes in Saccharomyces cerevisiae reveal a network of genome-wide transcriptional oscillators.
    Chin SL; Marcus IM; Klevecz RR; Li CM
    FEBS J; 2012 Mar; 279(6):1119-30. PubMed ID: 22289124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal processing and the design of microarray time-series experiments.
    Klevecz RR; Li CM; Bolen JL
    Methods Mol Biol; 2007; 377():75-94. PubMed ID: 17634610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genomewide oscillation in transcription gates DNA replication and cell cycle.
    Klevecz RR; Bolen J; Forrest G; Murray DB
    Proc Natl Acad Sci U S A; 2004 Feb; 101(5):1200-5. PubMed ID: 14734811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimization of transcriptional temporal noise and scale invariance in the yeast genome.
    Ferreira RC; Bosco F; Paiva PB; Briones MR
    Genet Mol Res; 2007 Jul; 6(2):397-414. PubMed ID: 17624863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide oscillation of transcription in yeast.
    Reinke H; Gatfield D
    Trends Biochem Sci; 2006 Apr; 31(4):189-91. PubMed ID: 16500104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae.
    Davis CA; Ares M
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3262-7. PubMed ID: 16484372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference.
    Liu Y; Ye S; Erkine AM
    In Silico Biol; 2009; 9(5-6):379-89. PubMed ID: 22430439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding free energies of 5'-UTRs impact post-transcriptional regulation on a genomic scale in yeast.
    Ringnér M; Krogh M
    PLoS Comput Biol; 2005 Dec; 1(7):e72. PubMed ID: 16355254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae.
    Duarte NC; Palsson BØ; Fu P
    BMC Genomics; 2004 Sep; 5():63. PubMed ID: 15355549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-resolution map of transcription in the yeast genome.
    David L; Huber W; Granovskaia M; Toedling J; Palm CJ; Bofkin L; Jones T; Davis RW; Steinmetz LM
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5320-5. PubMed ID: 16569694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disentangling information flow in the Ras-cAMP signaling network.
    Carter GW; Rupp S; Fink GR; Galitski T
    Genome Res; 2006 Apr; 16(4):520-6. PubMed ID: 16533914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical resynchronization and Bayesian detection of periodically expressed genes.
    Lu X; Zhang W; Qin ZS; Kwast KE; Liu JS
    Nucleic Acids Res; 2004; 32(2):447-55. PubMed ID: 14739237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting biological associations between genes based on the theory of phase synchronization.
    Kim CS; Riikonen P; Salakoski T
    Biosystems; 2008 May; 92(2):99-113. PubMed ID: 18289772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network.
    Famili I; Forster J; Nielsen J; Palsson BO
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13134-9. PubMed ID: 14578455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.