BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 17043236)

  • 1. Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer.
    Richardson J; Blunck R; Ge P; Selvin PR; Bezanilla F; Papazian DM; Correa AM
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15865-70. PubMed ID: 17043236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels.
    Shimomura T; Irie K; Nagura H; Imai T; Fujiyoshi Y
    J Biol Chem; 2011 Mar; 286(9):7409-17. PubMed ID: 21177850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models of the structure and gating mechanisms of the pore domain of the NaChBac ion channel.
    Shafrir Y; Durell SR; Guy HR
    Biophys J; 2008 Oct; 95(8):3650-62. PubMed ID: 18641075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activated state of a sodium channel voltage sensor in a membrane environment.
    Chakrapani S; Sompornpisut P; Intharathep P; Roux B; Perozo E
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5435-40. PubMed ID: 20207950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular template for a voltage sensor in a novel K+ channel. III. Functional reconstitution of a sensorless pore module from a prokaryotic Kv channel.
    Santos JS; Grigoriev SM; Montal M
    J Gen Physiol; 2008 Dec; 132(6):651-66. PubMed ID: 19029373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular template for a voltage sensor in a novel K+ channel. I. Identification and functional characterization of KvLm, a voltage-gated K+ channel from Listeria monocytogenes.
    Santos JS; Lundby A; Zazueta C; Montal M
    J Gen Physiol; 2006 Sep; 128(3):283-92. PubMed ID: 16908725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement.
    Chanda B; Asamoah OK; Blunck R; Roux B; Bezanilla F
    Nature; 2005 Aug; 436(7052):852-6. PubMed ID: 16094369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer.
    Posson DJ; Ge P; Miller C; Bezanilla F; Selvin PR
    Nature; 2005 Aug; 436(7052):848-51. PubMed ID: 16094368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural models of the transmembrane region of voltage-gated and other K+ channels in open, closed, and inactivated conformations.
    Durell SR; Hao Y; Guy HR
    J Struct Biol; 1998; 121(2):263-84. PubMed ID: 9615442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-gated sodium channel (NaV) protein dissection creates a set of functional pore-only proteins.
    Shaya D; Kreir M; Robbins RA; Wong S; Hammon J; Brüggemann A; Minor DL
    Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12313-8. PubMed ID: 21746903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for lateral mobility of voltage sensors in prokaryotic voltage-gated sodium channels.
    Nagura H; Irie K; Imai T; Shimomura T; Hige T; Fujiyoshi Y
    Biochem Biophys Res Commun; 2010 Aug; 399(3):341-6. PubMed ID: 20655880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The voltage-sensor structure in a voltage-gated channel.
    Bezanilla F
    Trends Biochem Sci; 2005 Apr; 30(4):166-8. PubMed ID: 15817390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of the voltage-sensor domain and voltage-gated K+-channel proteins vectorially oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry.
    Gupta S; Dura JA; Freites JA; Tobias DJ; Blasie JK
    Langmuir; 2012 Jul; 28(28):10504-20. PubMed ID: 22686684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation and drug modulation of a voltage-gated sodium channel: Pivotal role of the S4-S5 linker in activation and slow inactivation.
    Xiao J; Bondarenko V; Wang Y; Suma A; Wells M; Chen Q; Tillman T; Luo Y; Yu B; Dailey WP; Eckenhoff R; Tang P; Carnevale V; Klein ML; Xu Y
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34260401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models of voltage-dependent conformational changes in NaChBac channels.
    Shafrir Y; Durell SR; Guy HR
    Biophys J; 2008 Oct; 95(8):3663-76. PubMed ID: 18641074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of the gating motif and C-type inactivation in prokaryotic voltage-gated sodium channels.
    Irie K; Kitagawa K; Nagura H; Imai T; Shimomura T; Fujiyoshi Y
    J Biol Chem; 2010 Feb; 285(6):3685-3694. PubMed ID: 19959480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A prokaryotic voltage-gated sodium channel.
    Ren D; Navarro B; Xu H; Yue L; Shi Q; Clapham DE
    Science; 2001 Dec; 294(5550):2372-5. PubMed ID: 11743207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution Cryoelectron Microscopy Structure of the Cyclic Nucleotide-Modulated Potassium Channel MloK1 in a Lipid Bilayer.
    Kowal J; Biyani N; Chami M; Scherer S; Rzepiela AJ; Baumgartner P; Upadhyay V; Nimigean CM; Stahlberg H
    Structure; 2018 Jan; 26(1):20-27.e3. PubMed ID: 29249605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Batrachotoxin acts as a stent to hold open homotetrameric prokaryotic voltage-gated sodium channels.
    Finol-Urdaneta RK; McArthur JR; Goldschen-Ohm MP; Gaudet R; Tikhonov DB; Zhorov BS; French RJ
    J Gen Physiol; 2019 Feb; 151(2):186-199. PubMed ID: 30587506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of an archaebacterial voltage-dependent K+ channel.
    Ruta V; Jiang Y; Lee A; Chen J; MacKinnon R
    Nature; 2003 Mar; 422(6928):180-5. PubMed ID: 12629550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.