These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 17043358)

  • 1. Association of focal adhesion kinase with tuberous sclerosis complex 2 in the regulation of s6 kinase activation and cell growth.
    Gan B; Yoo Y; Guan JL
    J Biol Chem; 2006 Dec; 281(49):37321-9. PubMed ID: 17043358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway.
    Crossland H; Kazi AA; Lang CH; Timmons JA; Pierre P; Wilkinson DJ; Smith K; Szewczyk NJ; Atherton PJ
    Am J Physiol Endocrinol Metab; 2013 Jul; 305(2):E183-93. PubMed ID: 23695213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of FIP200 interaction with the TSC1-TSC2 complex and its role in regulation of cell size control.
    Gan B; Melkoumian ZK; Wu X; Guan KL; Guan JL
    J Cell Biol; 2005 Aug; 170(3):379-89. PubMed ID: 16043512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced expression of glucose transporter-1 in vascular smooth muscle cells via the Akt/tuberous sclerosis complex subunit 2 (TSC2)/mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (S6K) pathway in experimental renal failure.
    Lin CY; Hsu SC; Lee HS; Lin SH; Tsai CS; Huang SM; Shih CC; Hsu YJ
    J Vasc Surg; 2013 Feb; 57(2):475-85. PubMed ID: 23265586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent.
    Jaeschke A; Hartkamp J; Saitoh M; Roworth W; Nobukuni T; Hodges A; Sampson J; Thomas G; Lamb R
    J Cell Biol; 2002 Oct; 159(2):217-24. PubMed ID: 12403809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways.
    Marin TM; Clemente CF; Santos AM; Picardi PK; Pascoal VD; Lopes-Cendes I; Saad MJ; Franchini KG
    Circ Res; 2008 Oct; 103(8):813-24. PubMed ID: 18757826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses.
    Smith EM; Finn SG; Tee AR; Browne GJ; Proud CG
    J Biol Chem; 2005 May; 280(19):18717-27. PubMed ID: 15772076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation.
    Chan JA; Zhang H; Roberts PS; Jozwiak S; Wieslawa G; Lewin-Kowalik J; Kotulska K; Kwiatkowski DJ
    J Neuropathol Exp Neurol; 2004 Dec; 63(12):1236-42. PubMed ID: 15624760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuberous sclerosis-2 (TSC2) regulates the stability of death-associated protein kinase-1 (DAPK) through a lysosome-dependent degradation pathway.
    Lin Y; Henderson P; Pettersson S; Satsangi J; Hupp T; Stevens C
    FEBS J; 2011 Jan; 278(2):354-70. PubMed ID: 21134130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 14-3-3beta binds to and negatively regulates the tuberous sclerosis complex 2 (TSC2) tumor suppressor gene product, tuberin.
    Shumway SD; Li Y; Xiong Y
    J Biol Chem; 2003 Jan; 278(4):2089-92. PubMed ID: 12468542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical role of T-loop and H-motif phosphorylation in the regulation of S6 kinase 1 by the tuberous sclerosis complex.
    Shah OJ; Hunter T
    J Biol Chem; 2004 May; 279(20):20816-23. PubMed ID: 14993219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity.
    Li Y; Inoki K; Guan KL
    Mol Cell Biol; 2004 Sep; 24(18):7965-75. PubMed ID: 15340059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serine 302 Phosphorylation of Mouse Insulin Receptor Substrate 1 (IRS1) Is Dispensable for Normal Insulin Signaling and Feedback Regulation by Hepatic S6 Kinase.
    Copps KD; Hançer NJ; Qiu W; White MF
    J Biol Chem; 2016 Apr; 291(16):8602-17. PubMed ID: 26846849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of FoxO1 and TSC2 induces insulin resistance through activation of the mammalian target of rapamycin/p70 S6K pathway.
    Cao Y; Kamioka Y; Yokoi N; Kobayashi T; Hino O; Onodera M; Mochizuki N; Nakae J
    J Biol Chem; 2006 Dec; 281(52):40242-51. PubMed ID: 17077083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling.
    Inoki K; Li Y; Zhu T; Wu J; Guan KL
    Nat Cell Biol; 2002 Sep; 4(9):648-57. PubMed ID: 12172553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AKT-independent phosphorylation of TSC2 and activation of mTOR and ribosomal protein S6 kinase signaling by prostaglandin F2alpha.
    Arvisais EW; Romanelli A; Hou X; Davis JS
    J Biol Chem; 2006 Sep; 281(37):26904-13. PubMed ID: 16816403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes.
    Miyazaki M; McCarthy JJ; Esser KA
    FEBS J; 2010 May; 277(9):2180-91. PubMed ID: 20412061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. c-myc Repression of TSC2 contributes to control of translation initiation and Myc-induced transformation.
    Ravitz MJ; Chen L; Lynch M; Schmidt EV
    Cancer Res; 2007 Dec; 67(23):11209-17. PubMed ID: 18056446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis.
    Kwiatkowski DJ
    Cancer Biol Ther; 2003; 2(5):471-6. PubMed ID: 14614311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of tuberous sclerosis complex-2 function and activation of mammalian target of rapamycin signaling in endometrial carcinoma.
    Lu KH; Wu W; Dave B; Slomovitz BM; Burke TW; Munsell MF; Broaddus RR; Walker CL
    Clin Cancer Res; 2008 May; 14(9):2543-50. PubMed ID: 18451215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.