These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17043404)

  • 1. Light-sensitive motile iridophores and visual pigments in the neon tetra, Paracheirodon innesi.
    Kasai A; Oshima N
    Zoolog Sci; 2006 Sep; 23(9):815-9. PubMed ID: 17043404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural control of motile activity of light-sensitive iridophores in the neon tetra.
    Nagaishi H; Oshima N
    Pigment Cell Res; 1989; 2(6):485-92. PubMed ID: 2557604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced colour changes by the iridophores of the Neon tetra, Paracheirodon innesi.
    Clothier J; Lythgoe JN
    J Cell Sci; 1987 Dec; 88 ( Pt 5)():663-8. PubMed ID: 3503061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri.
    Shand J; Davies WL; Thomas N; Balmer L; Cowing JA; Pointer M; Carvalho LS; Trezise AE; Collin SP; Beazley LD; Hunt DM
    J Exp Biol; 2008 May; 211(Pt 9):1495-503. PubMed ID: 18424684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous circadian retinomotor movements in the neon tetra (Paracheirodon innesi).
    Lythgoe JN; Shand J
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1203-10. PubMed ID: 6885308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors.
    Xie HQ; Adler R
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4317-23. PubMed ID: 11095633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ultraviolet opsin is the first opsin expressed during retinal development of salmonid fishes.
    Cheng CL; Gan KJ; Flamarique IN
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):866-73. PubMed ID: 17251489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning of cone opsin genes and their expression in the retina of a smelt, Ayu (Plecoglossus altivelis, Teleostei).
    Minamoto T; Shimizu I
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):197-205. PubMed ID: 15649766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning of Bombyx cerebral opsin (Boceropsin) and cellular localization of its expression in the silkworm brain.
    Shimizu I; Yamakawa Y; Shimazaki Y; Iwasa T
    Biochem Biophys Res Commun; 2001 Sep; 287(1):27-34. PubMed ID: 11549248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel Xenopus SWS2, P434 visual pigment: structure, cellular location, and spectral analyses.
    Darden AG; Wu BX; Znoiko SL; Hazard ES; Kono M; Crouch RK; Ma JX
    Mol Vis; 2003 May; 9():191-9. PubMed ID: 12764253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diel changes in the expression of long wavelength-sensitive and ultraviolet-sensitive opsin genes in the Japanese firefly, Luciola cruciata.
    Oba Y; Kainuma T
    Gene; 2009 May; 436(1-2):66-70. PubMed ID: 19232386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes).
    Matsumoto Y; Fukamachi S; Mitani H; Kawamura S
    Gene; 2006 Apr; 371(2):268-78. PubMed ID: 16460888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expressions of rod and cone photoreceptor-like proteins in human epidermis.
    Tsutsumi M; Ikeyama K; Denda S; Nakanishi J; Fuziwara S; Aoki H; Denda M
    Exp Dermatol; 2009 Jun; 18(6):567-70. PubMed ID: 19493002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species.
    Briscoe AD; Bernard GD
    J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The signaling pathway in photoresponses that may be mediated by visual pigments in erythrophores of Nile tilapia.
    Ban E; Kasai A; Sato M; Yokozeki A; Hisatomi O; Oshima N
    Pigment Cell Res; 2005 Oct; 18(5):360-9. PubMed ID: 16162176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning of a rhodopsin gene from salamander rods.
    Chen N; Ma JX; Corson DW; Hazard ES; Crouch RK
    Invest Ophthalmol Vis Sci; 1996 Aug; 37(9):1907-13. PubMed ID: 8759361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of cone opsin mRNA levels following experimental retinal detachment and reattachment.
    Rex TS; Lewis GP; Geller SF; Fisher SK
    Mol Vis; 2002 Apr; 8():114-8. PubMed ID: 11979236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning of the salamander red and blue cone visual pigments.
    Xu L; Hazard ES; Lockman DK; Crouch RK; Ma J
    Mol Vis; 1998 Jul; 4():10. PubMed ID: 9675215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey.
    Davies WL; Cowing JA; Carvalho LS; Potter IC; Trezise AE; Hunt DM; Collin SP
    FASEB J; 2007 Sep; 21(11):2713-24. PubMed ID: 17463225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of spectral tuning in the dolphin visual pigments.
    Fasick JI; Robsinson PR
    Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.