These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1704363)

  • 1. Aminoacylation of alanine minihelices. "Discriminator" base modulates transition state of single turnover reaction.
    Shi JP; Schimmel P
    J Biol Chem; 1991 Feb; 266(5):2705-8. PubMed ID: 1704363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aminoacylation of RNA minihelices with alanine.
    Francklyn C; Schimmel P
    Nature; 1989 Feb; 337(6206):478-81. PubMed ID: 2915692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nucleotide that enhances the charging of RNA minihelix sequence variants with alanine.
    Shi JP; Francklyn C; Hill K; Schimmel P
    Biochemistry; 1990 Apr; 29(15):3621-6. PubMed ID: 1692733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic aminoacylation of tRNA acceptor stem helices with cysteine is dependent on a single nucleotide.
    Hamann CS; Hou YM
    Biochemistry; 1995 May; 34(19):6527-32. PubMed ID: 7756283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of discriminator base stacking interactions: molecular dynamics analysis of A73 microhelix(Ala) variants.
    Nagan MC; Beuning P; Musier-Forsyth K; Cramer CJ
    Nucleic Acids Res; 2000 Jul; 28(13):2527-34. PubMed ID: 10871402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G:U-Independent RNA Minihelix Aminoacylation by Nanoarchaeum equitans Alanyl-tRNA Synthetase: An Insight into the Evolution of Aminoacyl-tRNA Synthetases.
    Arutaki M; Kurihara R; Matsuoka T; Inami A; Tokunaga K; Ohno T; Takahashi H; Takano H; Ando T; Mutsuro-Aoki H; Umehara T; Tamura K
    J Mol Evol; 2020 Aug; 88(6):501-509. PubMed ID: 32382786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of discriminator base atomic groups that modulate the alanine aminoacylation reaction.
    Fischer AE; Beuning PJ; Musier-Forsyth K
    J Biol Chem; 1999 Dec; 274(52):37093-6. PubMed ID: 10601268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identity elements of tRNA(Thr) towards Saccharomyces cerevisiae threonyl-tRNA synthetase.
    Nameki N
    Nucleic Acids Res; 1995 Aug; 23(15):2831-6. PubMed ID: 7659504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the acceptor stem of Escherichia coli tRNA Ala: role of the G3.U70 base pair in synthetase recognition.
    Ramos A; Varani G
    Nucleic Acids Res; 1997 Jun; 25(11):2083-90. PubMed ID: 9153306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single base pair affects binding and catalytic parameters in the molecular recognition of a transfer RNA.
    Park SJ; Hou YM; Schimmel P
    Biochemistry; 1989 Mar; 28(6):2740-6. PubMed ID: 2659081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that a major determinant for the identity of a transfer RNA is conserved in evolution.
    Hou YM; Schimmel P
    Biochemistry; 1989 Aug; 28(17):6800-4. PubMed ID: 2684266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove.
    Musier-Forsyth K; Usman N; Scaringe S; Doudna J; Green R; Schimmel P
    Science; 1991 Aug; 253(5021):784-6. PubMed ID: 1876835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient aminoacylation of the tRNA(Ala) acceptor stem: dependence on the 2:71 base pair.
    Beuning PJ; Nagan MC; Cramer CJ; Musier-Forsyth K; GelpĂ­ JL; Bashford D
    RNA; 2002 May; 8(5):659-70. PubMed ID: 12022232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Region of a conserved sequence motif in a class II tRNA synthetase needed for transfer of an activated amino acid to an RNA substrate.
    Shi JP; Musier-Forsyth K; Schimmel P
    Biochemistry; 1994 May; 33(17):5312-8. PubMed ID: 8172905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striking effects of coupling mutations in the acceptor stem on recognition of tRNAs by Escherichia coli Met-tRNA synthetase and Met-tRNA transformylase.
    Lee CP; Dyson MR; Mandal N; Varshney U; Bahramian B; RajBhandary UL
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9262-6. PubMed ID: 1409632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetase recognition determinants of E. coli valine transfer RNA.
    Horowitz J; Chu WC; Derrick WB; Liu JC; Liu M; Yue D
    Biochemistry; 1999 Jun; 38(24):7737-46. PubMed ID: 10387013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissection of a class II tRNA synthetase: determinants for minihelix recognition are tightly associated with domain for amino acid activation.
    Buechter DD; Schimmel P
    Biochemistry; 1993 May; 32(19):5267-72. PubMed ID: 8494904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant aminoacyl-tRNA synthetase that compensates for a mutation in the major identity determinant of its tRNA.
    Miller WT; Hou YM; Schimmel P
    Biochemistry; 1991 Mar; 30(10):2635-41. PubMed ID: 2001352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minor groove recognition of the critical acceptor helix base pair by an appended module of a class II tRNA synthetase.
    Buechter DD; Schimmel P
    Biochemistry; 1995 May; 34(18):6014-9. PubMed ID: 7742303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell growth inhibition by sequence-specific RNA minihelices.
    Hipps D; Schimmel P
    EMBO J; 1995 Aug; 14(16):4050-5. PubMed ID: 7664744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.