These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 17043631)
1. Modification of low-density lipoprotein during radiolabeling with 99mTc using three labeling methods. Sobal G; Resch U; Tatzber F; Sinzinger H Q J Nucl Med Mol Imaging; 2006 Dec; 50(4):334-43. PubMed ID: 17043631 [TBL] [Abstract][Full Text] [Related]
2. Modification of low-density lipoprotein by different radioiodination methods. Sobal G; Resch U; Sinzinger H Nucl Med Biol; 2004 Apr; 31(3):381-8. PubMed ID: 15028251 [TBL] [Abstract][Full Text] [Related]
3. Efficient site-specific radiolabeling of a modified C2A domain of synaptotagmin I with [99mTc(CO)3]+: a new radiopharmaceutical for imaging cell death. Tavaré R; Torres Martin De Rosales R; Blower PJ; Mullen GE Bioconjug Chem; 2009 Nov; 20(11):2071-81. PubMed ID: 19874007 [TBL] [Abstract][Full Text] [Related]
4. Oxidative and malondialdehyde modification of low-density lipoprotein: a comparative study. Chen Y; Zhou M; Liu S; Ding Z; Lou N; Pang Z; Wan J Br J Biomed Sci; 1997 Sep; 54(3):159-65. PubMed ID: 9499592 [TBL] [Abstract][Full Text] [Related]
5. Effect of simvastatin on the oxidation of native and modified lipoproteins. Sobal G; Sinzinger H Biochem Pharmacol; 2005 Oct; 70(8):1185-91. PubMed ID: 16143314 [TBL] [Abstract][Full Text] [Related]
6. Aluminum ions stimulate the oxidizability of low density lipoprotein by Fe2+: implication in hemodialysis mediated atherogenic LDL modification. Kapiotis S; Hermann M; Exner M; Sturm BN; Scheiber-Mojdehkar B; Goldenberg H; Kopp S; Chiba P; Gmeiner BM Free Radic Res; 2005 Nov; 39(11):1225-31. PubMed ID: 16298749 [TBL] [Abstract][Full Text] [Related]
7. Radiotracers for low density lipoprotein biodistribution studies in vivo: technetium-99m low density lipoprotein versus radioiodinated low density lipoprotein preparations. Vallabhajosula S; Paidi M; Badimon JJ; Le NA; Goldsmith SJ; Fuster V; Ginsberg HN J Nucl Med; 1988 Jul; 29(7):1237-45. PubMed ID: 3134523 [TBL] [Abstract][Full Text] [Related]
8. Effects of oxidation on the structure and stability of human low-density lipoprotein. Jayaraman S; Gantz DL; Gursky O Biochemistry; 2007 May; 46(19):5790-7. PubMed ID: 17444660 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of low-density lipoprotein and high-density lipoprotein oxidation by raloxifene. Resch U; Mellauner V; Budinsky A; Sinzinger H J Womens Health (Larchmt); 2004 May; 13(4):404-11. PubMed ID: 15186657 [TBL] [Abstract][Full Text] [Related]
10. Oximes as inhibitors of low density lipoprotein oxidation. de Lima Portella R; Barcelos RP; de Bem AF; Carratu VS; Bresolin L; da Rocha JB; Soares FA Life Sci; 2008 Dec; 83(25-26):878-85. PubMed ID: 18992260 [TBL] [Abstract][Full Text] [Related]
11. Use of stabilized technetium-99m-exametazime for radiolabeling leukocytes. Hung JC; Chowdhury S; Mullan BP J Nucl Med; 1998 May; 39(5):912-7. PubMed ID: 9591600 [TBL] [Abstract][Full Text] [Related]
12. Decomposition of lipid hydroperoxides enhances the uptake of low density lipoprotein by macrophages. Babiy AV; Gebicki JM Acta Biochim Pol; 1999; 46(1):31-42. PubMed ID: 10453979 [TBL] [Abstract][Full Text] [Related]
13. Preparation and investigation of 99m technetium-labeled low-density lipoproteins in rabbits with experimentally induced hypercholesterolemia. Bozóky Z; Balogh L; Máthé D; Fülöp L; Bertók L; Jánoki GA Eur Biophys J; 2004 Apr; 33(2):140-5. PubMed ID: 14663630 [TBL] [Abstract][Full Text] [Related]
14. Partial characterization of low density lipoprotein preparations isolated from fresh and frozen plasma after radiolabeling by seven different methods. Atsma DE; Kempen HJ; Nieuwenhuizen W; van 't Hooft FM; Pauwels EK J Lipid Res; 1991 Jan; 32(1):173-81. PubMed ID: 2010689 [TBL] [Abstract][Full Text] [Related]
15. Oxidation of low-density lipoprotein cholesterol following administration of poloxamer 407 to mice results from an indirect effect. Johnston TP; Zhou X J Cardiovasc Pharmacol; 2007 Apr; 49(4):246-52. PubMed ID: 17438410 [TBL] [Abstract][Full Text] [Related]
16. Decrease in the particle size of low-density lipoprotein (LDL) by oxidation. Hidaka A; Inoue K; Kutsukake S; Adachi M; Kakuta Y; Kojo S Bioorg Med Chem Lett; 2005 Jun; 15(11):2781-5. PubMed ID: 15911255 [TBL] [Abstract][Full Text] [Related]
17. Low-density lipoproteins generated during an oral fat load in mild hypertriglyceridemic and healthy subjects are smaller, denser, and have an increased low-density lipoprotein receptor binding affinity. Noto D; Rizzo M; Barbagallo CM; Cefalù AB; Verde AL; Fayer F; Notarbartolo A; Averna MR Metabolism; 2006 Oct; 55(10):1308-16. PubMed ID: 16979400 [TBL] [Abstract][Full Text] [Related]
18. Enhanced lipid oxidation by oxidatively modified myoglobin: role of protein-bound heme. Vuletich JL; Osawa Y; Aviram M Biochem Biophys Res Commun; 2000 Mar; 269(3):647-51. PubMed ID: 10720470 [TBL] [Abstract][Full Text] [Related]
19. Low-density lipoprotein (LDL)-antioxidant lignans from Myristica fragrans seeds. Kwon HS; Kim MJ; Jeong HJ; Yang MS; Park KH; Jeong TS; Lee WS Bioorg Med Chem Lett; 2008 Jan; 18(1):194-8. PubMed ID: 17998162 [TBL] [Abstract][Full Text] [Related]
20. Novel 3,5-diaryl pyrazolines and pyrazole as low-density lipoprotein (LDL) oxidation inhibitor. Jeong TS; Kim KS; Kim JR; Cho KH; Lee S; Lee WS Bioorg Med Chem Lett; 2004 Jun; 14(11):2719-23. PubMed ID: 15125921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]