BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 17043822)

  • 1. Isolation of bacteria able to grow on both polyethylene glycol (PEG) and polypropylene glycol (PPG) and their PEG/PPG dehydrogenases.
    Hu X; Fukutani A; Liu X; Kimbara K; Kawai F
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1407-13. PubMed ID: 17043822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial degradation of polyethers.
    Kawai F
    Appl Microbiol Biotechnol; 2002 Jan; 58(1):30-8. PubMed ID: 11831473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of PEG-carboxylate dehydrogenase and glutathione S-transferase in PEG metabolism by Sphingopyxis macrogoltabida strain 103.
    Somyoonsap P; Tani A; Charoenpanich J; Minami T; Kimbara K; Kawai F
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):473-84. PubMed ID: 18719904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide.
    Sugimoto M; Tanabe M; Hataya M; Enokibara S; Duine JA; Kawai F
    J Bacteriol; 2001 Nov; 183(22):6694-8. PubMed ID: 11673442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of cytoplasmic NAD-dependent polypropylene glycol dehydrogenase from Stenotrophomonas maltophilia.
    Tachibana S; Naka N; Kawai F; Yasuda M
    FEMS Microbiol Lett; 2008 Nov; 288(2):266-72. PubMed ID: 19054086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyethylene glycol (PEG)-carboxylate-CoA synthetase is involved in PEG metabolism in Sphingopyxis macrogoltabida strain 103.
    Tani A; Somyoonsap P; Minami T; Kimbara K; Kawai F
    Arch Microbiol; 2008 Apr; 189(4):407-10. PubMed ID: 17985114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proposed oxidative metabolic pathway for polypropylene glycol in Sphingobium sp. strain PW-1.
    Hu X; Liu X; Tani A; Kimbara K; Kawai F
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):1115-8. PubMed ID: 18391452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyvinyl alcohol and polyethylene glycol form polymer bodies in the periplasm of Sphingomonads that are able to assimilate them.
    Kawai F; Kitajima S; Oda K; Higasa T; Charoenpanich J; Hu X; Mamoto R
    Arch Microbiol; 2013 Feb; 195(2):131-40. PubMed ID: 23263333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pva operon is located on the megaplasmid of Sphingopyxis sp. strain 113P3 and is constitutively expressed, although expression is enhanced by PVA.
    Hu X; Mamoto R; Fujioka Y; Tani A; Kimbara K; Kawai F
    Appl Microbiol Biotechnol; 2008 Mar; 78(4):685-93. PubMed ID: 18214469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new ether bond-splitting enzyme found in Gram-positive polyethylene glycol 6000-utilizing bacterium, Pseudonocardia sp. strain K1.
    Yamashita M; Tani A; Kawai F
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):174-9. PubMed ID: 15480637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s.
    Zgoła-Grześkowiak A; Grześkowiak T; Zembrzuska J; Łukaszewski Z
    Chemosphere; 2006 Jul; 64(5):803-9. PubMed ID: 16343594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and expression of soluble cytochrome c and its role in polyvinyl alcohol degradation by polyvinyl alcohol-utilizing Sphingopyxis sp. strain 113P3.
    Mamoto R; Hu X; Chiue H; Fujioka Y; Kawai F
    J Biosci Bioeng; 2008 Feb; 105(2):147-51. PubMed ID: 18343342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of a quinoprotein (PQQ-containing) alcohol dehydrogenase in the degradation of polypropylene glycols by the bacterium Stenotrophomonas maltophilia.
    Tachibana S; Kuba N; Kawai F; Duine JA; Yasuda M
    FEMS Microbiol Lett; 2003 Jan; 218(2):345-9. PubMed ID: 12586415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates.
    Chen ZW; Liu YY; Wu JF; She Q; Jiang CY; Liu SJ
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):688-98. PubMed ID: 17111141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and conservation of a polyethylene glycol-degradative operon in sphingomonads.
    Tani A; Charoenpanich J; Mori T; Takeichi M; Kimbara K; Kawai F
    Microbiology (Reading); 2007 Feb; 153(Pt 2):338-346. PubMed ID: 17259605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a cryptic plasmid, pSM103mini, from polyethylene-glycol degrading Sphingopyxis macrogoltabida strain 103.
    Tani A; Tanaka A; Minami T; Kimbara K; Kawai F
    Biosci Biotechnol Biochem; 2011; 75(2):295-8. PubMed ID: 21307601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell surface structure enhancing uptake of polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain 113P3.
    Hu X; Mamoto R; Shimomura Y; Kimbara K; Kawai F
    Arch Microbiol; 2007 Sep; 188(3):235-41. PubMed ID: 17453173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test.
    Zgola-Grzeskowiak A; Grzeskowiak T; Zembrzuska J; Franska M; Franski R; Kozik T; Lukaszewski Z
    Chemosphere; 2007 Mar; 67(5):928-33. PubMed ID: 17173952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a novel poly(vinyl alcohol)-degrading bacterium, Sphingopyxis sp. PVA3.
    Yamatsu A; Matsumi R; Atomi H; Imanaka T
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):804-11. PubMed ID: 16583228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemistry of microbial polyvinyl alcohol degradation.
    Kawai F; Hu X
    Appl Microbiol Biotechnol; 2009 Aug; 84(2):227-37. PubMed ID: 19590867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.