These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 17043914)

  • 21. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea.
    van de Vossenberg JL; Ubbink-Kok T; Elferink MG; Driessen AJ; Konings WN
    Mol Microbiol; 1995 Dec; 18(5):925-32. PubMed ID: 8825096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.
    Konings WN; Lolkema JS; Bolhuis H; van Veen HW; Poolman B; Driessen AJ
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):117-28. PubMed ID: 9049023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptations of anaerobic archaea to life under extreme energy limitation.
    Mayer F; Müller V
    FEMS Microbiol Rev; 2014 May; 38(3):449-72. PubMed ID: 24118021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Significance of Na+ in the fish pathogen, Vibrio anguillarum, under energy depleted condition.
    Fujiwara-Nagata E; Eguchi M
    FEMS Microbiol Lett; 2004 May; 234(1):163-7. PubMed ID: 15109735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Translocation of proteins across archaeal cytoplasmic membranes.
    Pohlschröder M; Dilks K; Hand NJ; Wesley Rose R
    FEMS Microbiol Rev; 2004 Feb; 28(1):3-24. PubMed ID: 14975527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy transduction and transport processes in thermophilic bacteria.
    Konings WN; Tolner B; Speelmans G; Elferink MG; de Wit JG; Driessen AJ
    J Bioenerg Biomembr; 1992 Dec; 24(6):601-9. PubMed ID: 1459990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive drug resistance mediated by root-nodulation-cell division efflux pumps.
    Daniels C; Ramos JL
    Clin Microbiol Infect; 2009 Jan; 15 Suppl 1():32-6. PubMed ID: 19220351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A bioenergetic basis for membrane divergence in archaea and bacteria.
    Sojo V; Pomiankowski A; Lane N
    PLoS Biol; 2014 Aug; 12(8):e1001926. PubMed ID: 25116890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How are signals transduced across the cytoplasmic membrane? Transport proteins as transmitter of information.
    Tetsch L; Jung K
    Amino Acids; 2009 Sep; 37(3):467-77. PubMed ID: 19198980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecological role of energy taxis in microorganisms.
    Alexandre G; Greer-Phillips S; Zhulin IB
    FEMS Microbiol Rev; 2004 Feb; 28(1):113-26. PubMed ID: 14975533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Some insights into energy metabolism for osmoregulation in fish.
    Tseng YC; Hwang PP
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):419-29. PubMed ID: 18539088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How can archaea cope with extreme acidity?
    Schäfer G
    Novartis Found Symp; 1999; 221():131-44; discussion 145-51. PubMed ID: 10207917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes.
    Ren Q; Paulsen IT
    J Mol Microbiol Biotechnol; 2007; 12(3-4):165-79. PubMed ID: 17587866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein thermostability in Archaea and Eubacteria.
    Trivedi S; Gehlot HS; Rao SR
    Genet Mol Res; 2006 Dec; 5(4):816-27. PubMed ID: 17183489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Membrane mechanisms of excretion of physiologically active substances by bacteria (review)].
    Plakunov VK
    Prikl Biokhim Mikrobiol; 1986; 22(6):723-35. PubMed ID: 3543923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioenergetic models for acetate and phosphate transport in bacteria important in enhanced biological phosphorus removal.
    Burow LC; Mabbett AN; McEwan AG; Bond PL; Blackall LL
    Environ Microbiol; 2008 Jan; 10(1):87-98. PubMed ID: 18211269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transmembrane transport of peptidoglycan precursors across model and bacterial membranes.
    van Dam V; Sijbrandi R; Kol M; Swiezewska E; de Kruijff B; Breukink E
    Mol Microbiol; 2007 May; 64(4):1105-14. PubMed ID: 17501931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea.
    Ghosh W; Dam B
    FEMS Microbiol Rev; 2009 Nov; 33(6):999-1043. PubMed ID: 19645821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ins and outs of glucose transport systems in eubacteria.
    Jahreis K; Pimentel-Schmitt EF; Brückner R; Titgemeyer F
    FEMS Microbiol Rev; 2008 Nov; 32(6):891-907. PubMed ID: 18647176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupling of energy to transmembrane solute translocation in bacteria.
    Res Microbiol; 1990; 141(3):281-395. PubMed ID: 2281189
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.