BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 17044003)

  • 1. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls.
    Aldini G; Dalle-Donne I; Facino RM; Milzani A; Carini M
    Med Res Rev; 2007 Nov; 27(6):817-68. PubMed ID: 17044003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts.
    Colzani M; Aldini G; Carini M
    J Proteomics; 2013 Oct; 92():28-50. PubMed ID: 23597925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Edaravone inhibits protein carbonylation by a direct carbonyl-scavenging mechanism: focus on reactivity, selectivity, and reaction mechanisms.
    Aldini G; Vistoli G; Regazzoni L; Benfatto MC; Bettinelli I; Carini M
    Antioxid Redox Signal; 2010 Mar; 12(3):381-92. PubMed ID: 19722825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method to produce fully characterized ubiquitin covalently modified by 4-hydroxy-nonenal, glyoxal, methylglyoxal, and malondialdehyde.
    Colzani M; Criscuolo A; Casali G; Carini M; Aldini G
    Free Radic Res; 2016; 50(3):328-36. PubMed ID: 26554438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein modification by acrolein: relevance to pathological conditions and inhibition by aldehyde sequestering agents.
    Aldini G; Orioli M; Carini M
    Mol Nutr Food Res; 2011 Sep; 55(9):1301-19. PubMed ID: 21805620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipoxidation-derived reactive carbonyl species as potential drug targets in preventing protein carbonylation and related cellular dysfunction.
    Aldini G; Dalle-Donne I; Colombo R; Maffei Facino R; Milzani A; Carini M
    ChemMedChem; 2006 Oct; 1(10):1045-58. PubMed ID: 16915603
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach.
    Mano J; Nagata M; Okamura S; Shiraya T; Mitsui T
    Plant Cell Physiol; 2014 Jul; 55(7):1233-44. PubMed ID: 24850833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunochemical crossreactivity of antibodies specific for "advanced glycation endproducts" with "advanced lipoxidation endproducts".
    Richter T; Münch G; Lüth HJ; Arendt T; Kientsch-Engel R; Stahl P; Fengler D; Kuhla B
    Neurobiol Aging; 2005 Apr; 26(4):465-74. PubMed ID: 15653175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls.
    Singh M; Kapoor A; Bhatnagar A
    Chem Biol Interact; 2015 Jun; 234():261-73. PubMed ID: 25559856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HNE Michael adducts to histidine and histidine-containing peptides as biomarkers of lipid-derived carbonyl stress in urines: LC-MS/MS profiling in Zucker obese rats.
    Orioli M; Aldini G; Benfatto MC; Facino RM; Carini M
    Anal Chem; 2007 Dec; 79(23):9174-84. PubMed ID: 17979257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation.
    Yuan Q; Zhu X; Sayre LM
    Chem Res Toxicol; 2007 Jan; 20(1):129-39. PubMed ID: 17226935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometry for detection of 4-hydroxy-trans-2-nonenal (HNE) adducts with peptides and proteins.
    Carini M; Aldini G; Facino RM
    Mass Spectrom Rev; 2004; 23(4):281-305. PubMed ID: 15133838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel high resolution MS approach for the screening of 4-hydroxy-trans-2-nonenal sequestering agents.
    Colzani M; Criscuolo A; De Maddis D; Garzon D; Yeum KJ; Vistoli G; Carini M; Aldini G
    J Pharm Biomed Anal; 2014 Mar; 91():108-18. PubMed ID: 24463041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel molecular approaches for improving enzymatic and nonenzymatic detoxification of 4-hydroxynonenal: toward the discovery of a novel class of bioactive compounds.
    Aldini G; Carini M; Yeum KJ; Vistoli G
    Free Radic Biol Med; 2014 Apr; 69():145-56. PubMed ID: 24456906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha,beta-unsaturated aldehydes adducts to actin and albumin as potential biomarkers of carbonylation damage.
    Aldini G; Orioli M; Carini M
    Redox Rep; 2007; 12(1):20-5. PubMed ID: 17263903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds.
    Sousa BC; Pitt AR; Spickett CM
    Free Radic Biol Med; 2017 Oct; 111():294-308. PubMed ID: 28192230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced lipoxidation end products (ALEs) as RAGE binders: Mass spectrometric and computational studies to explain the reasons why.
    Mol M; Degani G; Coppa C; Baron G; Popolo L; Carini M; Aldini G; Vistoli G; Altomare A
    Redox Biol; 2019 May; 23():101083. PubMed ID: 30598328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid peroxidation: physiological levels and dual biological effects.
    Niki E
    Free Radic Biol Med; 2009 Sep; 47(5):469-84. PubMed ID: 19500666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive carbonyls and oxidative stress: potential for therapeutic intervention.
    Ellis EM
    Pharmacol Ther; 2007 Jul; 115(1):13-24. PubMed ID: 17570531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in serum carbonyl and malondialdehyde levels following colchicine and vitamin E treatment in Behcet's disease.
    Gulbahar O; Adisen H; Koca C; Aricioglu A; Gulekon A
    Methods Find Exp Clin Pharmacol; 2007 Oct; 29(8):521-4. PubMed ID: 18040527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.