BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 17044031)

  • 1. Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury.
    Ishii K; Nakamura M; Dai H; Finn TP; Okano H; Toyama Y; Bregman BS
    J Neurosci Res; 2006 Dec; 84(8):1669-81. PubMed ID: 17044031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury.
    Ikegami T; Nakamura M; Yamane J; Katoh H; Okada S; Iwanami A; Watanabe K; Ishii K; Kato F; Fujita H; Takahashi T; Okano HJ; Toyama Y; Okano H
    Eur J Neurosci; 2005 Dec; 22(12):3036-46. PubMed ID: 16367770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery.
    Klapka N; Hermanns S; Straten G; Masanneck C; Duis S; Hamers FP; Müller D; Zuschratter W; Müller HW
    Eur J Neurosci; 2005 Dec; 22(12):3047-58. PubMed ID: 16367771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes.
    Fujiwara Y; Tanaka N; Ishida O; Fujimoto Y; Murakami T; Kajihara H; Yasunaga Y; Ochi M
    Neurosci Lett; 2004 Aug; 366(3):287-91. PubMed ID: 15288436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage.
    Cao QL; Zhang YP; Howard RM; Walters WM; Tsoulfas P; Whittemore SR
    Exp Neurol; 2001 Jan; 167(1):48-58. PubMed ID: 11161592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Downregulation of activating transcription factor 5 is required for differentiation of neural progenitor cells into astrocytes.
    Angelastro JM; Mason JL; Ignatova TN; Kukekov VG; Stengren GB; Goldman JE; Greene LA
    J Neurosci; 2005 Apr; 25(15):3889-99. PubMed ID: 15829641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury.
    Hasegawa K; Chang YW; Li H; Berlin Y; Ikeda O; Kane-Goldsmith N; Grumet M
    Exp Neurol; 2005 Jun; 193(2):394-410. PubMed ID: 15869942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lentiviral vector-mediated transduction of neural progenitor cells before implantation into injured spinal cord and brain to detect their migration, deliver neurotrophic factors and repair tissue.
    Blits B; Kitay BM; Farahvar A; Caperton CV; Dietrich WD; Bunge MB
    Restor Neurol Neurosci; 2005; 23(5-6):313-24. PubMed ID: 16477093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive astrogliosis induces astrocytic differentiation of adult neural stem/progenitor cells in vitro.
    Faijerson J; Tinsley RB; Apricó K; Thorsell A; Nodin C; Nilsson M; Blomstrand F; Eriksson PS
    J Neurosci Res; 2006 Nov; 84(7):1415-24. PubMed ID: 16998910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells.
    Lang B; Liu HL; Liu R; Feng GD; Jiao XY; Ju G
    Neuroscience; 2004; 128(4):775-83. PubMed ID: 15464285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xenografts of expanded primate olfactory ensheathing glia support transient behavioral recovery that is independent of serotonergic or corticospinal axonal regeneration in nude rats following spinal cord transection.
    Guest JD; Herrera L; Margitich I; Oliveria M; Marcillo A; Casas CE
    Exp Neurol; 2008 Aug; 212(2):261-74. PubMed ID: 18511045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures.
    Kamei N; Tanaka N; Oishi Y; Hamasaki T; Nakanishi K; Sakai N; Ochi M
    Spine (Phila Pa 1976); 2007 May; 32(12):1272-8. PubMed ID: 17515814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplanting neural progenitors into a complete transection model of spinal cord injury.
    Medalha CC; Jin Y; Yamagami T; Haas C; Fischer I
    J Neurosci Res; 2014 May; 92(5):607-18. PubMed ID: 24452691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of human neural stem cell transplantation in canine spinal cord hemisection.
    Lee SH; Chung YN; Kim YH; Kim YJ; Park JP; Kwon DK; Kwon OS; Heo JH; Kim YH; Ryu S; Kang HJ; Paek SH; Wang KC; Kim SU; Yoon BW
    Neurol Res; 2009 Nov; 31(9):996-1002. PubMed ID: 19138477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The remyelinating potential and in vitro differentiation of MOG-expressing oligodendrocyte precursors isolated from the adult rat CNS.
    Crang AJ; Gilson JM; Li WW; Blakemore WF
    Eur J Neurosci; 2004 Sep; 20(6):1445-60. PubMed ID: 15355312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery.
    Mikami Y; Okano H; Sakaguchi M; Nakamura M; Shimazaki T; Okano HJ; Kawakami Y; Toyama Y; Toda M
    J Neurosci Res; 2004 May; 76(4):453-65. PubMed ID: 15114617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced regenerative axon growth of multiple fibre populations in traumatic spinal cord injury following scar-suppressing treatment.
    Schiwy N; Brazda N; Müller HW
    Eur J Neurosci; 2009 Oct; 30(8):1544-53. PubMed ID: 19817844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of cells with proliferative activity after a brain injury.
    Tatsumi K; Haga S; Matsuyoshi H; Inoue M; Manabe T; Makinodan M; Wanaka A
    Neurochem Int; 2005 Apr; 46(5):381-9. PubMed ID: 15737436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.