These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Sequence-based protein structure prediction using a reduced state-space hidden Markov model. Lampros C; Costas Papaloukas ; Exarchos TP; Yorgos Goletsis ; Fotiadis DI Comput Biol Med; 2007 Sep; 37(9):1211-24. PubMed ID: 17161834 [TBL] [Abstract][Full Text] [Related]
6. Polyelectrolyte domains and intrinsic disorder within the prismatic Asprich protein family. Delak K; Collino S; Evans JS Biochemistry; 2009 Apr; 48(16):3669-77. PubMed ID: 19344178 [TBL] [Abstract][Full Text] [Related]
7. Using Bayesian multinomial classifier to predict whether a given protein sequence is intrinsically disordered. Bulashevska A; Eils R J Theor Biol; 2008 Oct; 254(4):799-803. PubMed ID: 18611404 [TBL] [Abstract][Full Text] [Related]
8. Assessment of disorder predictions in CASP7. Bordoli L; Kiefer F; Schwede T Proteins; 2007; 69 Suppl 8():129-36. PubMed ID: 17680688 [TBL] [Abstract][Full Text] [Related]
9. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related]
10. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Masso M; Vaisman II Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749 [TBL] [Abstract][Full Text] [Related]
11. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search. Garg A; Raghava GP In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. Linding R; Schymkowitz J; Rousseau F; Diella F; Serrano L J Mol Biol; 2004 Sep; 342(1):345-53. PubMed ID: 15313629 [TBL] [Abstract][Full Text] [Related]
13. Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices. Munteanu CR; González-Díaz H; Magalhães AL J Theor Biol; 2008 Sep; 254(2):476-82. PubMed ID: 18606172 [TBL] [Abstract][Full Text] [Related]
14. Comparing and combining predictors of mostly disordered proteins. Oldfield CJ; Cheng Y; Cortese MS; Brown CJ; Uversky VN; Dunker AK Biochemistry; 2005 Feb; 44(6):1989-2000. PubMed ID: 15697224 [TBL] [Abstract][Full Text] [Related]
15. Prediction of protein disorder. Dosztányi Z; Tompa P Methods Mol Biol; 2008; 426():103-15. PubMed ID: 18542859 [TBL] [Abstract][Full Text] [Related]
16. SubSeqer: a graph-based approach for the detection and identification of repetitive elements in low-complexity sequences. He D; Parkinson J Bioinformatics; 2008 Apr; 24(7):1016-7. PubMed ID: 18304932 [TBL] [Abstract][Full Text] [Related]
17. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Najmanovich R; Kurbatova N; Thornton J Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810 [TBL] [Abstract][Full Text] [Related]
18. Predicting intrinsic disorder in proteins: an overview. He B; Wang K; Liu Y; Xue B; Uversky VN; Dunker AK Cell Res; 2009 Aug; 19(8):929-49. PubMed ID: 19597536 [TBL] [Abstract][Full Text] [Related]
19. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis. Li ZC; Zhou XB; Dai Z; Zou XY Amino Acids; 2009 Jul; 37(2):415-25. PubMed ID: 18726140 [TBL] [Abstract][Full Text] [Related]
20. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. Dosztányi Z; Csizmók V; Tompa P; Simon I J Mol Biol; 2005 Apr; 347(4):827-39. PubMed ID: 15769473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]