BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 17044379)

  • 21. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.
    Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S32-49. PubMed ID: 8794031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of repetitive impact on the mechanical strength of pyrolytic carbon.
    Kepner J; Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S50-8. PubMed ID: 8794027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and in vitro performance of a novel bileaflet mechanical heart valve prosthesis.
    Medart D; Schmitz C; Rau G; Reul H
    Int J Artif Organs; 2005 Mar; 28(3):256-63. PubMed ID: 15818549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pure pyrolytic carbon: preparation and properties of a new material, On-X carbon for mechanical heart valve prostheses.
    Ely JL; Emken MR; Accuntius JA; Wilde DS; Haubold AD; More RB; Bokros JC
    J Heart Valve Dis; 1998 Nov; 7(6):626-32. PubMed ID: 9870196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the fractography of overload, stress corrosion, and cyclic fatigue failures in pyrolytic-carbon materials used in prosthetic heart-valve devices.
    Ritchie RO; Dauskardt RH; Pennisi FJ
    J Biomed Mater Res; 1992 Jan; 26(1):69-76. PubMed ID: 1577836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatigue of isotropic pyrolytic carbon used in mechanical heart valves.
    Ma L; Sines G
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S59-64. PubMed ID: 8794033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel "biomechanical" polymeric valve prostheses with special design for aortic and mitral position: a future option for pediatric patients?
    Sachweh JS; Daebritz SH
    ASAIO J; 2006; 52(5):575-80. PubMed ID: 16966862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach.
    Mol A; Driessen NJ; Rutten MC; Hoerstrup SP; Bouten CV; Baaijens FP
    Ann Biomed Eng; 2005 Dec; 33(12):1778-88. PubMed ID: 16389526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Use of new materials results in improved prostheses. Metals, polymers, ceramics and composite materials extend durability].
    Carlsson L; Johansson C
    Ugeskr Laeger; 1999 Oct; 161(42):5786-92. PubMed ID: 10578693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [New materials improve joint prostheses. Metals, polymers, ceramics and composite materials extend the durability].
    Carlsson L; Johansson C
    Lakartidningen; 1999 May; 96(20):2458-60, 2463-7. PubMed ID: 10380491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo comparison of hemocompatibility of materials used in mechanical heart valves.
    Yang Y; Franzen SF; Olin CL
    J Heart Valve Dis; 1996 Sep; 5(5):532-7. PubMed ID: 8894994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ex-vivo characterization of three Björk-Shiley Delrin heart valves.
    Farè S; Brunella MF; Bruschi G; Vitali E
    J Heart Valve Dis; 2008 May; 17(3):325-31. PubMed ID: 18592930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo canine studies of a Sinkhole valve and vascular graft coated with biocompatible PU-PEO-SO3.
    Han DK; Lee KB; Park KD; Kim CS; Jeong SY; Kim YH; Kim HM; Min BG
    ASAIO J; 1993; 39(3):M537-41. PubMed ID: 8268593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prevention of polyurethane valve cusp calcification with covalently attached bisphosphonate diethylamino moieties.
    Alferiev I; Stachelek SJ; Lu Z; Fu AL; Sellaro TL; Connolly JM; Bianco RW; Sacks MS; Levy RJ
    J Biomed Mater Res A; 2003 Aug; 66(2):385-95. PubMed ID: 12889009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development, manufacturing and validation of a single-leaflet mechanical heart valve prosthesis.
    Reul H; Steinseifer U; Knoch M; Rau G
    J Heart Valve Dis; 1995 Sep; 4(5):513-9. PubMed ID: 8581195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thrombogenic evaluation of two mechanical heart valve prostheses using a new in-vitro test system.
    Kim CH; Steinseifer U; Schmitz-Rode T
    J Heart Valve Dis; 2009 Mar; 18(2):207-13. PubMed ID: 19455896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An in vivo method for testing hemocompatibility of materials used in prosthetic heart valves.
    Yang Y; Franzen S; Tengvall P; Olin C
    J Heart Valve Dis; 1996 Sep; 5(5):526-31. PubMed ID: 8894993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An interlaboratory comparison of the FDA protocol for the evaluation of cavitation potential of mechanical heart valves.
    Carey RF; Porter JM; Richard G; Luck C; Shu MC; Guo GX; Elizondo DR; Kingsbury C; Anderson S; Herman BA
    J Heart Valve Dis; 1995 Sep; 4(5):532-9; discussion 539-41. PubMed ID: 8581198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Update of the European standards for inactive surgical implants in the area of heart valve prostheses.
    Eichinger W; Däbritz S; Lange R
    Eur J Cardiothorac Surg; 2007 Nov; 32(5):690-5. PubMed ID: 17870610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow-induced platelet activation in a St. Jude mechanical heart valve, a trileaflet polymeric heart valve, and a St. Jude tissue valve.
    Yin W; Gallocher S; Pinchuk L; Schoephoerster RT; Jesty J; Bluestein D
    Artif Organs; 2005 Oct; 29(10):826-31. PubMed ID: 16185345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.