These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 17044703)
1. Lithium diisopropylamide-mediated ortholithiation and anionic fries rearrangement of aryl carbamates: role of aggregates and mixed aggregates. Singh KJ; Collum DB J Am Chem Soc; 2006 Oct; 128(42):13753-60. PubMed ID: 17044703 [TBL] [Abstract][Full Text] [Related]
2. Autocatalysis in lithium diisopropylamide-mediated ortholithiations. Singh KJ; Hoepker AC; Collum DB J Am Chem Soc; 2008 Dec; 130(52):18008-17. PubMed ID: 19053473 [TBL] [Abstract][Full Text] [Related]
3. Lithium diisopropylamide-mediated ortholithiation of 2-fluoropyridines: rates, mechanisms, and the role of autocatalysis. Gupta L; Hoepker AC; Ma Y; Viciu MS; Faggin MF; Collum DB J Org Chem; 2013 May; 78(9):4214-30. PubMed ID: 23270408 [TBL] [Abstract][Full Text] [Related]
4. Anionic Snieckus-Fries rearrangement: solvent effects and role of mixed aggregates. Riggs JC; Singh KJ; Yun M; Collum DB J Am Chem Soc; 2008 Oct; 130(41):13709-17. PubMed ID: 18798619 [TBL] [Abstract][Full Text] [Related]
5. Lithium diisopropylamide-mediated reactions of imines, unsaturated esters, epoxides, and aryl carbamates: influence of hexamethylphosphoramide and ethereal cosolvents on reaction mechanisms. Ma Y; Collum DB J Am Chem Soc; 2007 Nov; 129(47):14818-25. PubMed ID: 17985891 [TBL] [Abstract][Full Text] [Related]
6. Lithium diisopropylamide-mediated enolization: catalysis by hemilabile ligands. Ramirez A; Sun X; Collum DB J Am Chem Soc; 2006 Aug; 128(31):10326-36. PubMed ID: 16881665 [TBL] [Abstract][Full Text] [Related]
7. Aryl Carbamates: Mechanisms of Orthosodiations and Snieckus-Fries Rearrangements. Ma Y; Woltornist RA; Algera RF; Collum DB J Org Chem; 2019 Jul; 84(14):9051-9057. PubMed ID: 31257864 [TBL] [Abstract][Full Text] [Related]
8. 1,4-addition of lithium diisopropylamide to unsaturated esters: role of rate-limiting deaggregation, autocatalysis, lithium chloride catalysis, and other mixed aggregation effects. Ma Y; Hoepker AC; Gupta L; Faggin MF; Collum DB J Am Chem Soc; 2010 Nov; 132(44):15610-23. PubMed ID: 20961095 [TBL] [Abstract][Full Text] [Related]
9. Lithium diisopropylamide-mediated lithiation of 1,4-difluorobenzene under nonequilibrium conditions: role of monomer-, dimer-, and tetramer-based intermediates and lessons about rate limitation. Liang J; Hoepker AC; Bruneau AM; Ma Y; Gupta L; Collum DB J Org Chem; 2014 Dec; 79(24):11885-902. PubMed ID: 25000303 [TBL] [Abstract][Full Text] [Related]
10. Pseudophedrine-Derived Myers Enolates: Structures and Influence of Lithium Chloride on Reactivity and Mechanism. Zhou Y; Jermaks J; Keresztes I; MacMillan SN; Collum DB J Am Chem Soc; 2019 Apr; 141(13):5444-5460. PubMed ID: 30896939 [TBL] [Abstract][Full Text] [Related]
12. n-Butyllithium/N,N,N',N'-tetramethylethylenediamine-mediated ortholithiations of aryl oxazolines: substrate-dependent mechanisms. Chadwick ST; Ramirez A; Gupta L; Collum DB J Am Chem Soc; 2007 Feb; 129(8):2259-68. PubMed ID: 17269777 [TBL] [Abstract][Full Text] [Related]
13. Solid-state and solution structures of hetero-aggregates formed between nBuLi and NCN pincer aryl lithium. Chase PA; Lutz M; Spek AL; Gossage RA; van Koten G Dalton Trans; 2008 Nov; (42):5783-90. PubMed ID: 18941666 [TBL] [Abstract][Full Text] [Related]
14. Enediolate-dilithium amide mixed aggregates in the enantioselective alkylation of arylacetic acids: structural studies and a stereochemical model. Ma Y; Stivala CE; Wright AM; Hayton T; Liang J; Keresztes I; Lobkovsky E; Collum DB; Zakarian A J Am Chem Soc; 2013 Nov; 135(45):16853-64. PubMed ID: 23654300 [TBL] [Abstract][Full Text] [Related]
15. Regioselective lithium diisopropylamide-mediated ortholithiation of 1-chloro-3-(trifluoromethyl)benzene: role of autocatalysis, lithium chloride catalysis, and reversibility. Hoepker AC; Gupta L; Ma Y; Faggin MF; Collum DB J Am Chem Soc; 2011 May; 133(18):7135-51. PubMed ID: 21500823 [TBL] [Abstract][Full Text] [Related]
16. Structural and rate studies of the 1,2-additions of lithium phenylacetylide to lithiated quinazolinones: influence of mixed aggregates on the reaction mechanism. Briggs TF; Winemiller MD; Collum DB; Parsons RL; Davulcu AH; Harris GD; Fortunak JM; Confalone PN J Am Chem Soc; 2004 May; 126(17):5427-35. PubMed ID: 15113214 [TBL] [Abstract][Full Text] [Related]
17. Structure and dynamics of α-aryl amide and ketone enolates: THF, PMDTA, TMTAN, HMPA, and crypt-solvated lithium enolates, and comparison with phosphazenium analogues. Kolonko KJ; Guzei IA; Reich HJ J Org Chem; 2010 Sep; 75(18):6163-72. PubMed ID: 20735148 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of lithium diisopropylamide-mediated substitution of 2,6-difluoropyridine. Viciu MS; Gupta L; Collum DB J Am Chem Soc; 2010 May; 132(18):6361-5. PubMed ID: 20397635 [TBL] [Abstract][Full Text] [Related]
19. Lithium diisopropylamide: oligomer structures at low ligand concentrations. Rutherford JL; Collum DB J Am Chem Soc; 2001 Jan; 123(2):199-202. PubMed ID: 11456504 [TBL] [Abstract][Full Text] [Related]
20. Solution and computed structure of O-lithium N,N-diisopropyl-P,P-diphenylphosphinic amide. Unprecedented Li-O-Li-O self-assembly of an aryllithium. Fernández I; Oña-Burgos P; Oliva JM; Ortiz FL J Am Chem Soc; 2010 Apr; 132(14):5193-204. PubMed ID: 20232861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]