These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17045096)

  • 1. The effect of an alternative medical procedure upon low-frequency oscillations in cutaneous blood flow velocity.
    Nelson KE; Sergueef N; Glonek T
    J Manipulative Physiol Ther; 2006 Oct; 29(8):626-36. PubMed ID: 17045096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of cranial manipulation on the Traube-Hering-Mayer oscillation as measured by laser-Doppler flowmetry.
    Sergueef N; Nelson KE; Glonek T
    Altern Ther Health Med; 2002; 8(6):74-6. PubMed ID: 12440842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of light exercise upon blood flow velocity determined by laser-Doppler flowmetry.
    Sergueef N; Nelson KE; Glonek T
    J Med Eng Technol; 2004; 28(4):143-50. PubMed ID: 15371004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Fourier transform spectral analysis of cutaneous blood flux in systemic sclerosis].
    Salvat-Melis M; Carpentier PH; Moreau-Gaudry A; Boignard A; Paris A; Cracowski JL
    J Mal Vasc; 2007 Apr; 32(2):83-9. PubMed ID: 17329053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording the rate of the cranial rhythmic impulse.
    Nelson KE; Sergueef N; Glonek T
    J Am Osteopath Assoc; 2006 Jun; 106(6):337-41. PubMed ID: 16790539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of prolonged surface pressure on the skin blood flowmotions in anaesthetized rats--an assessment by spectral analysis of laser Doppler flowmetry signals.
    Li Z; Tam EW; Kwan MP; Mak AF; Lo SC; Leung MC
    Phys Med Biol; 2006 May; 51(10):2681-94. PubMed ID: 16675876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral analysis of laser Doppler skin blood flow oscillations in human essential arterial hypertension.
    Rossi M; Carpi A; Di Maria C; Galetta F; Santoro G
    Microvasc Res; 2006; 72(1-2):34-41. PubMed ID: 16797604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of lumbar sympathetic neurones activity to rat's skin blood flow oscillations.
    Bajrovic F; Cencur M; Hozic M; Ribaric S; Stefanovska A
    Pflugers Arch; 2000; 439(3 Suppl):R158-60. PubMed ID: 10653176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise.
    Kvernmo HD; Stefanovska A; Bracic M; Kirkebøen KA; Kvernebo K
    Microvasc Res; 1998 Nov; 56(3):173-82. PubMed ID: 9828155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cranial rhythmic impulse related to the Traube-Hering-Mayer oscillation: comparing laser-Doppler flowmetry and palpation.
    Nelson KE; Sergueef N; Lipinski CM; Chapman AR; Glonek T
    J Am Osteopath Assoc; 2001 Mar; 101(3):163-73. PubMed ID: 11329812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vasomotion and spontaneous low-frequency oscillations in blood flow and nitric oxide in cat optic nerve head.
    Buerk DG; Riva CE
    Microvasc Res; 1998 Jan; 55(1):103-12. PubMed ID: 9473413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvascular reactivity in normotensive subjects with a familial predisposition to hypertension.
    Maver J; Strucl M
    Microvasc Res; 2000 Nov; 60(3):241-8. PubMed ID: 11078640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post pressure response of skin blood flowmotions in anesthetized rats with spinal cord injury.
    Li Z; Tam EW; Lau RY; So KF; Wu W; Mak AF
    Microvasc Res; 2009 Jun; 78(1):20-4. PubMed ID: 19328816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of sensory peptidergic innervation on human skin blood flow oscillations in the range 0.047-0.069 Hz].
    Krupatkin AI
    Fiziol Cheloveka; 2007; 33(3):48-54. PubMed ID: 17619616
    [No Abstract]   [Full Text] [Related]  

  • 15. Application of the adaptive wavelet transform for analysis of blood flow oscillations in the human skin.
    Tankanag A; Chemeris N
    Phys Med Biol; 2008 Nov; 53(21):5967-76. PubMed ID: 18836220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of alpha-adrenoceptors in the cutaneous postocclusive reactive hyperaemia.
    Cankar K; Finderle Z; Strucl M
    Pflugers Arch; 2000; 440(5 Suppl):R121-2. PubMed ID: 11005637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelet-based spectrum analysis of sacral skin blood flow response to alternating pressure.
    Jan YK; Brienza DM; Geyer MJ; Karg P
    Arch Phys Med Rehabil; 2008 Jan; 89(1):137-45. PubMed ID: 18164343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelet phase coherence analysis of the skin blood flow oscillations in human.
    Tankanag AV; Grinevich AA; Kirilina TV; Krasnikov GV; Piskunova GM; Chemeris NK
    Microvasc Res; 2014 Sep; 95():53-9. PubMed ID: 25026413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelet-based correlations of skin temperature and blood flow oscillations.
    Podtaev S; Morozov M; Frick P
    Cardiovasc Eng; 2008 Sep; 8(3):185-9. PubMed ID: 18563565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory and non respiratory oscillations of the skin blood flow: a window to the function of the sympathetic fibers to the skin blood vessels.
    Estañol B; Sentíes-Madrid H; Elías Y; Coyac P; Martínez-Memije R; Infante O; Tellez-Zenteno JF; García-Ramos G
    Arch Cardiol Mex; 2008; 78(2):187-94. PubMed ID: 18754410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.