BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 17045144)

  • 21. Effect of arch wire size on orthodontic reverse closing loop and retraction force in canine tooth distalization : Three-dimensional finite element analysis.
    Buyuk SK; Guler MS; Bekci ML
    J Orofac Orthop; 2019 Jan; 80(1):17-24. PubMed ID: 30306188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Biomechanical study on orthodontic tooth movement by means of numerical simulation. Effects of principal stresses in periodontal membrane].
    Inoue Y
    Osaka Daigaku Shigaku Zasshi; 1989 Dec; 34(2):306-21. PubMed ID: 2488922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical investigation into the role of the periodontal ligament in optimising orthodontic force: a finite element case study.
    Liao Z; Chen J; Li W; Darendeliler MA; Swain M; Li Q
    Arch Oral Biol; 2016 Jun; 66():98-107. PubMed ID: 26943815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical finite-element investigation of the position of the centre of resistance of the upper incisors.
    Reimann S; Keilig L; Jäger A; Bourauel C
    Eur J Orthod; 2007 Jun; 29(3):219-24. PubMed ID: 17317864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of friction and flexural rigidity of the archwire on canine movement in sliding mechanics: a numerical simulation with a 3-dimensional finite element method.
    Kojima Y; Fukui H; Miyajima K
    Am J Orthod Dentofacial Orthop; 2006 Sep; 130(3):275.e1-10. PubMed ID: 16979481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A numerical simulation of orthodontic tooth movement produced by a canine retraction spring.
    Kojima Y; Mizuno T; Umemura S; Fukui H
    Dent Mater J; 2007 Jul; 26(4):561-7. PubMed ID: 17886461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical analysis for total distalization of the mandibular dentition: A finite element study.
    Chae JM; Park JH; Kojima Y; Tai K; Kook YA; Kyung HM
    Am J Orthod Dentofacial Orthop; 2019 Mar; 155(3):388-397. PubMed ID: 30826042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical features of the periodontium: an experimental pilot study in vivo.
    Cronau M; Ihlow D; Kubein-Meesenburg D; Fanghänel J; Dathe H; Nägerl H
    Am J Orthod Dentofacial Orthop; 2006 May; 129(5):599.e13-21. PubMed ID: 16679197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical evaluation of tooth- and implant-supported fixed dental prostheses with various nonrigid connector positions: a finite element analysis.
    Burak Özcelik T; Ersoy E; Yilmaz B
    J Prosthodont; 2011 Jan; 20(1):16-28. PubMed ID: 21251117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional finite-element analysis of a central lower incisor under labial and lingual loads.
    Lombardo L; Stefanoni F; Mollica F; Laura A; Scuzzo G; Siciliani G
    Prog Orthod; 2012 Sep; 13(2):154-63. PubMed ID: 23021119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical simulation of tooth movement in a therapy period.
    Qian Y; Fan Y; Liu Z; Zhang M
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S48-52. PubMed ID: 17923176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A finite element model of apical force distribution from orthodontic tooth movement.
    Rudolph DJ; Willes PMG ; Sameshima GT
    Angle Orthod; 2001 Apr; 71(2):127-31. PubMed ID: 11302589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stresses induced by edgewise appliances in the periodontal ligament--a finite element study.
    McGuinness N; Wilson AN; Jones M; Middleton J; Robertson NR
    Angle Orthod; 1992; 62(1):15-22. PubMed ID: 1554158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ideal orthodontic alignment load relationships based on periodontal ligament stress.
    Viecilli RF; Burstone CJ
    Orthod Craniofac Res; 2015 Apr; 18 Suppl 1():180-6. PubMed ID: 25865547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Three-dimensional finite element analysis of maxillary canine during the tooth translation movement].
    Bai D; Cheng BH; Luo SJ; Lü T
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2004 May; 35(3):358-60. PubMed ID: 15181835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses of 3-dimensional arch wires to vertical v-bends: comparisons with existing 2-dimensional data in the lateral view.
    Isacson RJ; Lindauer SJ; Conley P
    Semin Orthod; 1995 Mar; 1(1):57-63. PubMed ID: 8935045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional mechanical environment of orthodontic tooth movement and root resorption.
    Viecilli RF; Katona TR; Chen J; Hartsfield JK; Roberts WE
    Am J Orthod Dentofacial Orthop; 2008 Jun; 133(6):791.e11-26. PubMed ID: 18538239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical experiments on long-time orthodontic tooth movement.
    Schneider J; Geiger M; Sander FG
    Am J Orthod Dentofacial Orthop; 2002 Mar; 121(3):257-65. PubMed ID: 11941339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Smart brackets for 3D-force-moment measurements in orthodontic research and therapy - developmental status and prospects.
    Lapatki BG; Paul O
    J Orofac Orthop; 2007 Sep; 68(5):377-96. PubMed ID: 17882365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of PDL principal fibers in a 3-dimensional analysis of orthodontic tooth movement.
    Qian H; Chen J; Katona TR
    Am J Orthod Dentofacial Orthop; 2001 Sep; 120(3):272-9. PubMed ID: 11552126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.