BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 17045144)

  • 41. Three-dimensional finite element analysis of stress in the periodontal ligament of the maxillary first molar with simulated bone loss.
    Jeon PD; Turley PK; Ting K
    Am J Orthod Dentofacial Orthop; 2001 May; 119(5):498-504. PubMed ID: 11343021
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stress distribution in delayed replanted teeth splinted with different orthodontic wires: a three-dimensional finite element analysis.
    de Souza FI; Poi WR; da Silva VF; Martini AP; Melo RA; Panzarini SR; Rocha EP
    Dent Traumatol; 2015 Jun; 31(3):190-5. PubMed ID: 25604805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Initial effect of multiloop edgewise archwire on the mandibular dentition in Class III malocclusion subjects. A three-dimensional finite element study.
    Baek SH; Shin SJ; Ahn SJ; Chang YI
    Eur J Orthod; 2008 Feb; 30(1):10-5. PubMed ID: 18276927
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An in vivo 3D micro-CT evaluation of tooth movement after the application of different force magnitudes in rat molar.
    Gonzales C; Hotokezaka H; Arai Y; Ninomiya T; Tominaga J; Jang I; Hotokezaka Y; Tanaka M; Yoshida N
    Angle Orthod; 2009 Jul; 79(4):703-14. PubMed ID: 19537865
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Initial stress differences between sliding and sectional mechanics with an endosseous implant as anchorage: a 3-dimensional finite element analysis.
    Vásquez M; Calao E; Becerra F; Ossa J; Enríquez C; Fresneda E
    Angle Orthod; 2001 Aug; 71(4):247-56. PubMed ID: 11510633
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A finite element analysis of the optimal bending angles in a running loop for mesial translation of a mandibular molar using indirect skeletal anchorage.
    Kim MJ; Park JH; Kojima Y; Tai K; Chae JM
    Orthod Craniofac Res; 2018 Feb; 21(1):63-70. PubMed ID: 29271058
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic analysis for clarifying occlusal force transmission during orthodontic archwire application: difference between ISW and stainless steel wire.
    Iramaneerat K; Hisano M; Soma K
    J Med Dent Sci; 2004 Mar; 51(1):59-65. PubMed ID: 15137466
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-dimensional analysis using finite element method of anterior teeth inclination and center of resistance location.
    Geramy A; Sodagar A; Hassanpour M
    Chin J Dent Res; 2014; 17(1):37-42. PubMed ID: 25028688
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Testing force systems and biomechanics--measured tooth movements from differential moment closing loops.
    Kuhlberg AJ; Priebe D
    Angle Orthod; 2003 Jun; 73(3):270-80. PubMed ID: 12828435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of effective intrusion and extrusion force for maxillary canine using finite element analysis.
    Wu J; Liu Y; Wang D; Zhang J; Dong X; Jiang X; Xu X
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1294-1302. PubMed ID: 31553278
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The finite element method: a tool to study orthodontic tooth movement.
    Cattaneo PM; Dalstra M; Melsen B
    J Dent Res; 2005 May; 84(5):428-33. PubMed ID: 15840778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Construction and assessment of a three-dimensional finite element model of mandibualr second molar mesialization using customized lingual appliance and mini-implant].
    Chen C; Wang CX; Yang JH; Cai LY; Rong QG; Zhang YL
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Dec; 52(12):735-739. PubMed ID: 29275567
    [No Abstract]   [Full Text] [Related]  

  • 53. Development of an orthodontic simulator for measurement of orthodontic forces.
    Kuo B; Takakuda K; Miyairi H
    J Med Dent Sci; 2001 Mar; 48(1):15-21. PubMed ID: 12160238
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-dimensional coupling between orthodontic bone remodeling and superelastic behavior of a NiTi wire applied for initial alignment.
    Fathallah A; Hassine T; Gamaoun F; Wali M
    J Orofac Orthop; 2021 Mar; 82(2):99-110. PubMed ID: 33156353
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Corticotomy affects both the modus and magnitude of orthodontic tooth movement.
    Verna C; Cattaneo PM; Dalstra M
    Eur J Orthod; 2018 Jan; 40(1):107-112. PubMed ID: 28591765
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Influence of the arch-wire deformation on movement of the maxillary anterior teeth in the lingual retraction force system with micro-implant anchorage using 3-D finite element analysis].
    Zhang Y; Zhang Y; Jiang Q; Wang HQ; Qiu LX; Wang C
    Shanghai Kou Qiang Yi Xue; 2018 Apr; 27(2):117-122. PubMed ID: 30146635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Finite element analysis of mechanical characteristics during retracting mandibular incisors through sliding mechanics].
    Gu YJ; Wu YP; Gao MQ; Yao N; Chen WJ
    Shanghai Kou Qiang Yi Xue; 2008 Oct; 17(5):520-4. PubMed ID: 18989596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accumulated biomechanical effects of mandibular molar mesialization using clear aligners with auxiliary devices: an iterative finite element analysis.
    Lyu X; Cao X; Chen L; Liu Y; Li H; Hu C; Tan J
    Prog Orthod; 2023 Apr; 24(1):13. PubMed ID: 37032410
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On optimum orthodontic force theory as applied to canine retraction.
    Nikolai RJ
    Am J Orthod; 1975 Sep; 68(3):290-302. PubMed ID: 1057850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ideal arch force systems: a center-of-resistance perspective.
    Halazonetis DJ
    Am J Orthod Dentofacial Orthop; 1998 Sep; 114(3):256-64. PubMed ID: 9743130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.