BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

741 related articles for article (PubMed ID: 17045198)

  • 1. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable synthetic polymers for tissue engineering.
    Gunatillake PA; Adhikari R
    Eur Cell Mater; 2003 May; 5():1-16; discussion 16. PubMed ID: 14562275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in ring opening polymerization of lactones for biomedical applications.
    Albertsson AC; Varma IK
    Biomacromolecules; 2003; 4(6):1466-86. PubMed ID: 14606869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, characterization, and biocompatibility of novel injectable, biodegradable, and in situ crosslinkable polycarbonate-based macromers.
    Sharifi S; Imani M; Mirzadeh H; Atai M; Ziaee F; Bakhshi R
    J Biomed Mater Res A; 2009 Sep; 90(3):830-43. PubMed ID: 18615464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.
    Brannigan RP; Dove AP
    Biomater Sci; 2016 Dec; 5(1):9-21. PubMed ID: 27840864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane.
    Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM
    J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in synthetic bioelastomers.
    Shi R; Chen D; Liu Q; Wu Y; Xu X; Zhang L; Tian W
    Int J Mol Sci; 2009 Nov; 10(10):4223-4256. PubMed ID: 20057942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications.
    van Dijkhuizen-Radersma R; Roosma JR; Kaim P; Métairie S; Péters FL; de Wijn J; Zijlstra PG; de Groot K; Bezemer JM
    J Biomed Mater Res A; 2003 Dec; 67(4):1294-304. PubMed ID: 14624516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol-containing degradable poly(thiourethane-urethane)s for tissue engineering.
    Eglin D; Griffon S; Alini M
    J Biomater Sci Polym Ed; 2010; 21(4):477-91. PubMed ID: 20233504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.
    Sun H; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z
    Biomacromolecules; 2011 Jun; 12(6):1937-55. PubMed ID: 21469742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of functionalized biodegradable polyesters.
    Williams CK
    Chem Soc Rev; 2007 Oct; 36(10):1573-80. PubMed ID: 17721582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Use of synthetic biodegradable polymers in medicine].
    Maxa J; Dittrich M
    Ceska Slov Farm; 2001 Jan; 50(1):28-34. PubMed ID: 11242831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-crystalline aromatic-aliphatic copolyester bioresorbable polymers.
    de Oca HM; Wilson JE; Penrose A; Langton DM; Dagger AC; Anderson M; Farrar DF; Lovell CS; Ries ME; Ward IM; Wilson AD; Cowling SJ; Saez IM; Goodby JW
    Biomaterials; 2010 Oct; 31(30):7599-605. PubMed ID: 20655107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable 'intelligent' materials in response to physical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 Apr; 19(4):493-507. PubMed ID: 19441928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 May; 19(5):683-96. PubMed ID: 19441941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications.
    Misra SK; Valappil SP; Roy I; Boccaccini AR
    Biomacromolecules; 2006 Aug; 7(8):2249-58. PubMed ID: 16903667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation behaviors of electrospun resorbable polyester nanofibers.
    Dong Y; Liao S; Ngiam M; Chan CK; Ramakrishna S
    Tissue Eng Part B Rev; 2009 Sep; 15(3):333-51. PubMed ID: 19459780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.