BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

740 related articles for article (PubMed ID: 17045198)

  • 21. Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application.
    Zhang QS; Yan YH; Li SP; Feng T
    Biomed Mater; 2009 Jun; 4(3):035008. PubMed ID: 19468157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable polymers derived from amino acids.
    Khan W; Muthupandian S; Farah S; Kumar N; Domb AJ
    Macromol Biosci; 2011 Dec; 11(12):1625-36. PubMed ID: 22052719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrolytic degradation behavior of biodegradable polyetheresteramide-based polyurethane copolymers.
    Liu C; Gu Y; Qian Z; Fan L; Li J; Chao G; Tu M; Jia W
    J Biomed Mater Res A; 2005 Nov; 75(2):465-71. PubMed ID: 16094664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Development of biodegradable polymer scaffolds for bone tissue engineering].
    Zheng L; Wang Q; Pei GX
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2000 May; 14(3):175-80. PubMed ID: 12080858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly effective and slow-biodegradable network-type cationic gene delivery polymer: small library-like approach synthesis and characterization.
    Kim HJ; Kwon MS; Choi JS; Yang SM; Yoon JK; Kim K; Park JS
    Biomaterials; 2006 Apr; 27(10):2292-301. PubMed ID: 16313954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds.
    Zakharchenko S; Sperling E; Ionov L
    Biomacromolecules; 2011 Jun; 12(6):2211-5. PubMed ID: 21524116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemically controlled drug delivery based on intrinsically conducting polymers.
    Svirskis D; Travas-Sejdic J; Rodgers A; Garg S
    J Control Release; 2010 Aug; 146(1):6-15. PubMed ID: 20359512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diallyl tartrate as a multifunctional monomer for bio-polymer synthesis.
    Herath KI; Tan LP; Chai CL; Abadie MJ
    J Biomater Sci Polym Ed; 2010; 21(11):1459-81. PubMed ID: 20534196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formulation and surface modification of poly(ester-anhydride) micro- and nanospheres.
    Pfeifer BA; Burdick JA; Langer R
    Biomaterials; 2005 Jan; 26(2):117-24. PubMed ID: 15207458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poly(butylene succinate) and its copolymers: research, development and industrialization.
    Xu J; Guo BH
    Biotechnol J; 2010 Nov; 5(11):1149-63. PubMed ID: 21058317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of two-component injectable polyurethanes for bone tissue engineering.
    Bonzani IC; Adhikari R; Houshyar S; Mayadunne R; Gunatillake P; Stevens MM
    Biomaterials; 2007 Jan; 28(3):423-33. PubMed ID: 16979756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes.
    Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR
    Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications.
    Leclerc E; Furukawa KS; Miyata F; Sakai Y; Ushida T; Fujii T
    Biomaterials; 2004 Aug; 25(19):4683-90. PubMed ID: 15120514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers.
    Cohn D; Lando G; Sosnik A; Garty S; Levi A
    Biomaterials; 2006 Mar; 27(9):1718-27. PubMed ID: 16310849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutathione-mediated biodegradable polyurethanes derived from L-arabinitol.
    de Paz MV; Zamora F; Begines B; Ferris C; Galbis JA
    Biomacromolecules; 2010 Jan; 11(1):269-76. PubMed ID: 19954212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of aliphatic and aromatic polycarbonates.
    Artham T; Doble M
    Macromol Biosci; 2008 Jan; 8(1):14-24. PubMed ID: 17849431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach.
    Lipik VT; Kong JF; Chattopadhyay S; Widjaja LK; Liow SS; Venkatraman SS; Abadie MJ
    Acta Biomater; 2010 Nov; 6(11):4261-70. PubMed ID: 20566308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(ester amide) co-polymers promote blood and tissue compatibility.
    DeFife KM; Grako K; Cruz-Aranda G; Price S; Chantung R; Macpherson K; Khoshabeh R; Gopalan S; Turnell WG
    J Biomater Sci Polym Ed; 2009; 20(11):1495-511. PubMed ID: 19619393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(caprolactone-co-oxo-crown ether)-based poly(urethane)urea for soft tissue engineering applications.
    Wisse E; Renken RA; Roosma JR; Palmans AR; Meijer EW
    Biomacromolecules; 2007 Sep; 8(9):2739-45. PubMed ID: 17672503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.