BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 17045380)

  • 1. Determination of pulmonary irritant threshold concentrations of hexamethylene-1,6-diisocyanate (HDI) prepolymers by bronchoalveolar lavage in acute rat inhalation studies according to TRGS 430.
    Ma-Hock L; Gamer AO; Deckardt K; Leibold E; van Ravenzwaay B
    Food Chem Toxicol; 2007 Feb; 45(2):237-43. PubMed ID: 17045380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulmonary irritant potency of polyisocyanate aerosols in rats: comparative assessment of irritant threshold concentrations by bronchoalveolar lavage.
    Pauluhn J
    J Appl Toxicol; 2004; 24(3):231-47. PubMed ID: 15211618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative assessment of early acute lung injury in mice and rats exposed to 1,6-hexamethylene diisocyanate-polyisocyanate aerosols.
    Pauluhn J
    Toxicology; 2008 May; 247(1):33-45. PubMed ID: 18375034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhalation toxicity of 1,6-hexamethylene diisocyanate homopolymer (HDI-IC) aerosol: results of single inhalation exposure studies.
    Pauluhn J
    Toxicol Sci; 2000 Nov; 58(1):173-81. PubMed ID: 11053554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary responses and recovery following single and repeated inhalation exposure of rats to polymeric methylene diphenyl diisocyanate aerosols.
    Kilgour JD; Rattray NJ; Foster J; Soames A; Hext PM
    J Appl Toxicol; 2002; 22(6):371-85. PubMed ID: 12424741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term inhalation toxicity of polyisocyanate aerosols in rats: comparative assessment of irritant-threshold concentrations by bronchoalveolar lavage.
    Pauluhn J
    Inhal Toxicol; 2002 Mar; 14(3):287-301. PubMed ID: 12028818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhalation toxicity of 1,6-hexamethylene diisocyanate homopolymers (HDI-IC and HDI-BT): results of subacute and subchronic repeated inhalation exposure studies.
    Pauluhn J; Mohr U
    Inhal Toxicol; 2001 Jun; 13(6):513-32. PubMed ID: 11445890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months.
    Arts JH; Muijser H; Duistermaat E; Junker K; Kuper CF
    Food Chem Toxicol; 2007 Oct; 45(10):1856-67. PubMed ID: 17524541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mosquito coil smoke inhalation toxicity. Part II: subchronic nose-only inhalation study in rats.
    Pauluhn J; Mohr U
    J Appl Toxicol; 2006; 26(3):279-92. PubMed ID: 16552726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An HDI polyisocyanate aerosol exposure system for large-scale animal experiments.
    Lee CT; Poovey HG; Friedman M; Rando RJ; Hoyle GW
    AIHA J (Fairfax, Va); 2003; 64(4):439-44. PubMed ID: 12908857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period.
    Ellinger-Ziegelbauer H; Pauluhn J
    Toxicology; 2009 Dec; 266(1-3):16-29. PubMed ID: 19836432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model.
    Cassee FR; Muijser H; Duistermaat E; Freijer JJ; Geerse KB; Marijnissen JC; Arts JH
    Arch Toxicol; 2002 Jun; 76(5-6):277-86. PubMed ID: 12107645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory peripheral chemosensory irritation, acute and repeated exposure toxicity studies with aerosols of triethylene glycol.
    Ballantyne B; Snellings WM; Norris JC
    J Appl Toxicol; 2006; 26(5):387-96. PubMed ID: 16909429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary toxicity of polymeric hexamethylene diisocyanate aerosols in mice.
    Lee CT; Friedman M; Poovey HG; Ie SR; Rando RJ; Hoyle GW
    Toxicol Appl Pharmacol; 2003 May; 188(3):154-64. PubMed ID: 12729715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of pulmonary irritation by measurements of Penh and protein in bronchoalveolar lavage fluid in brown Norway rats and Wistar rats exposed to irritant aerosols.
    Pauluhn J
    Inhal Toxicol; 2004 Mar; 16(3):159-75. PubMed ID: 15204778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mosquito coil smoke inhalation toxicity. Part I: validation of test approach and acute inhalation toxicity.
    Pauluhn J
    J Appl Toxicol; 2006; 26(3):269-78. PubMed ID: 16547916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical analysis of biomonitoring endpoints for measuring exposure to polymeric diphenyl-methane-4,4'-diisocyanate (MDI) in rats: a comparison of markers of exposure and markers of effect.
    Pauluhn J
    Arch Toxicol; 2002 Feb; 76(1):13-22. PubMed ID: 11875620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the interrelationship of the pulmonary irritation and elicitation thresholds in rats sensitized with 1,6-hexamethylene diisocyanate (HDI).
    Pauluhn J
    Inhal Toxicol; 2015 Mar; 27(4):191-206. PubMed ID: 25924102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiratory effect of acute and subacute exposure to endotoxin-contaminated metal working fluid (MWF) aerosols on Sprague-Dawley rats.
    Lim CH; Yu IJ; Kim HY; Lee SB; Kang MG; Marshak DR; Moon CK
    Arch Toxicol; 2005 Jun; 79(6):321-9. PubMed ID: 15692821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit.
    Pauluhn J
    Regul Toxicol Pharmacol; 2010 Jun; 57(1):78-89. PubMed ID: 20074606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.