These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17045390)

  • 1. Prey detection mechanism of elasmobranchs.
    Kim D
    Biosystems; 2007 Feb; 87(2-3):322-31. PubMed ID: 17045390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptive field organization across multiple electrosensory maps. II. Computational analysis of the effects of receptive field size on prey localization.
    Maler L
    J Comp Neurol; 2009 Oct; 516(5):394-422. PubMed ID: 19655388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling an electrosensory landscape: behavioral and morphological optimization in elasmobranch prey capture.
    Brown BR
    J Exp Biol; 2002 Apr; 205(Pt 7):999-1007. PubMed ID: 11916995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plankton predation rates in turbulence: a study of the limitations imposed on a predator with a non-spherical field of sensory perception.
    Lewis DM; Bala SI
    J Theor Biol; 2006 Sep; 242(1):44-61. PubMed ID: 16542686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic and ecological factors influencing the number and distribution of electroreceptors in elasmobranchs.
    Kempster RM; McCarthy ID; Collin SP
    J Fish Biol; 2012 Apr; 80(5):2055-88. PubMed ID: 22497416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroethology and life history adaptations of the elasmobranch electric sense.
    Sisneros JA; Tricas TC
    J Physiol Paris; 2002; 96(5-6):379-89. PubMed ID: 14692486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroreception in elasmobranchs: sawfish as a case study.
    Wueringer BE
    Brain Behav Evol; 2012; 80(2):97-107. PubMed ID: 22986826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral responses of batoid elasmobranchs to prey-simulating electric fields are correlated to peripheral sensory morphology and ecology.
    Bedore CN; Harris LL; Kajiura SM
    Zoology (Jena); 2014 Apr; 117(2):95-103. PubMed ID: 24290363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory systems in sawfishes. 1. The ampullae of Lorenzini.
    Wueringer BE; Peverell SC; Seymour J; Squire L; Kajiura SM; Collin SP
    Brain Behav Evol; 2011; 78(2):139-49. PubMed ID: 21829004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural strategies for optimal processing of sensory signals.
    Maler L
    Prog Brain Res; 2007; 165():135-54. PubMed ID: 17925244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens.
    Tan EW; Nizar JM; Carrera-G E; Fortune ES
    Behav Brain Res; 2005 Oct; 164(1):83-92. PubMed ID: 16099058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of juvenile scalloped hammerhead sharks to electric stimuli.
    Kajiura SM; Fitzgerald TP
    Zoology (Jena); 2009; 112(4):241-50. PubMed ID: 19097876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences.
    Nelson ME; Maciver MA
    J Exp Biol; 1999 May; 202(Pt 10):1195-203. PubMed ID: 10210661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From morphology to neural information: the electric sense of the skate.
    Camperi M; Tricas TC; Brown BR
    PLoS Comput Biol; 2007 Jun; 3(6):e113. PubMed ID: 17571918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-receptor profile of sensory images and primary afferent neuronal representation in the mormyrid electrosensory system.
    Gómez L; Budelli R; Grant K; Caputi AA
    J Exp Biol; 2004 Jun; 207(Pt 14):2443-53. PubMed ID: 15184516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectric fields of marine organisms: voltage and frequency contributions to detectability by electroreceptive predators.
    Bedore CN; Kajiura SM
    Physiol Biochem Zool; 2013; 86(3):298-311. PubMed ID: 23629880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric imaging through active electrolocation: implication for the analysis of complex scenes.
    Engelmann J; Bacelo J; Metzen M; Pusch R; Bouton B; Migliaro A; Caputi A; Budelli R; Grant K; von der Emde G
    Biol Cybern; 2008 Jun; 98(6):519-39. PubMed ID: 18491164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling electrosensory and mechanosensory images during the predatory behavior of weakly electric fish.
    Nelson ME; MacIver MA; Coombs S
    Brain Behav Evol; 2002; 59(4):199-210. PubMed ID: 12138340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and processing of electromagnetic and near-field acoustic signals in elasmobranch fishes.
    Kalmijn AD
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1135-41. PubMed ID: 11079385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture.
    Greenwood PE; Ward LM; Russell DF; Neiman A; Moss F
    Phys Rev Lett; 2000 May; 84(20):4773-6. PubMed ID: 10990793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.