These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17045489)

  • 1. Myoelectric signal processing for control of powered limb prostheses.
    Parker P; Englehart K; Hudgins B
    J Electromyogr Kinesiol; 2006 Dec; 16(6):541-8. PubMed ID: 17045489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity.
    Campbell E; Phinyomark A; Scheme E
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations.
    Betthauser JL; Hunt CL; Osborn LE; Kaliki RR; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6373-6376. PubMed ID: 28325032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-machine and muscle-machine bio-sensing methods for gesture intent acquisition in upper-limb prosthesis control: a review.
    Nsugbe E
    J Med Eng Technol; 2021 Feb; 45(2):115-128. PubMed ID: 33475039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing Motor Variability Enhances Myoelectric Control Robustness Across Untrained Limb Positions.
    Stuttaford SA; Dyson M; Nazarpour K; Dupan SSG
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():23-32. PubMed ID: 38100346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper limb prosthesis use and abandonment: a survey of the last 25 years.
    Biddiss EA; Chau TT
    Prosthet Orthot Int; 2007 Sep; 31(3):236-57. PubMed ID: 17979010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
    Carey SL; Lura DJ; Highsmith MJ; ;
    J Rehabil Res Dev; 2015; 52(3):247-62. PubMed ID: 26230500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abstract and proportional myoelectric control for multi-fingered hand prostheses.
    Pistohl T; Cipriani C; Jackson A; Nazarpour K
    Ann Biomed Eng; 2013 Dec; 41(12):2687-98. PubMed ID: 23934195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use.
    Scheme E; Englehart K
    J Rehabil Res Dev; 2011; 48(6):643-59. PubMed ID: 21938652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of upper limb prostheses: terminology and proportional myoelectric control-a review.
    Fougner A; Stavdahl O; Kyberd PJ; Losier YG; Parker PA
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):663-77. PubMed ID: 22665514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current developments in surface electromyography.
    Alcan V; Zinnuroğlu M
    Turk J Med Sci; 2023; 53(5):1019-1031. PubMed ID: 38813041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional assessment of current upper limb prostheses: An integrated clinical and technological perspective.
    Capsi-Morales P; Piazza C; Sjoberg L; Catalano MG; Grioli G; Bicchi A; Hermansson LM
    PLoS One; 2023; 18(8):e0289978. PubMed ID: 37585427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communicative capital: a key resource for human-machine shared agency and collaborative capacity.
    Mathewson KW; Parker ASR; Sherstan C; Edwards AL; Sutton RS; Pilarski PM
    Neural Comput Appl; 2023; 35(23):16805-16819. PubMed ID: 37455836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time myoelectric control of wrist/hand motion in Duchenne muscular dystrophy: A case study.
    Nizamis K; Ayvaz A; Rijken NHM; Koopman BFJM; Sartori M
    Front Robot AI; 2023; 10():1100411. PubMed ID: 37090893
    [No Abstract]   [Full Text] [Related]  

  • 15. Virtual regression-based myoelectric hand-wrist prosthesis control and electrode site selection using no force feedback.
    Li J; Zhu Z; Boyd WJ; Martinez-Luna C; Dai C; Wang H; Wang H; Huang X; Farrell TR; Clancy EA
    Biomed Signal Process Control; 2023 Apr; 82():. PubMed ID: 36875964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks.
    Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined spatial and frequency encoding for electrotactile feedback of myoelectric signals.
    Nataletti S; Leo F; Dideriksen J; Brayda L; Dosen S
    Exp Brain Res; 2022 Sep; 240(9):2285-2298. PubMed ID: 35879359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Neuroergonomics in the Design of Personalized Prosthesis: Deepening the Centrality of Human Being.
    Corti L
    Front Neurorobot; 2022; 16():867115. PubMed ID: 35599667
    [No Abstract]   [Full Text] [Related]  

  • 19. EMG-driven control in lower limb prostheses: a topic-based systematic review.
    Cimolato A; Driessen JJM; Mattos LS; De Momi E; Laffranchi M; De Michieli L
    J Neuroeng Rehabil; 2022 May; 19(1):43. PubMed ID: 35526003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rejecting Novel Motions in High-Density Myoelectric Pattern Recognition Using Hybrid Neural Networks.
    Wu L; Chen X; Chen X; Zhang X
    Front Neurorobot; 2022; 16():862193. PubMed ID: 35418847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.