These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17045595)

  • 21. Modular control of human walking: a simulation study.
    Neptune RR; Clark DJ; Kautz SA
    J Biomech; 2009 Jun; 42(9):1282-7. PubMed ID: 19394023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.
    Segal AD; Zelik KE; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Adamczyk PG; Collins SH; Kuo AD; Czerniecki JM
    Hum Mov Sci; 2012 Aug; 31(4):918-31. PubMed ID: 22100728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis.
    Hall AL; Peterson CL; Kautz SA; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Jun; 26(5):509-15. PubMed ID: 21251738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Significance of static prosthesis alignment for standing and walking of patients with lower limb amputation].
    Blumentritt S; Schmalz T; Jarasch R
    Orthopade; 2001 Mar; 30(3):161-8. PubMed ID: 11501007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait.
    Seyedali M; Czerniecki JM; Morgenroth DC; Hahn ME
    J Neuroeng Rehabil; 2012 May; 9():29. PubMed ID: 22640660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does use of a powered ankle-foot prosthesis restore whole-body angular momentum during walking at different speeds?
    D'Andrea S; Wilhelm N; Silverman AK; Grabowski AM
    Clin Orthop Relat Res; 2014 Oct; 472(10):3044-54. PubMed ID: 24781926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance.
    Allen JL; Kautz SA; Neptune RR
    Clin Biomech (Bristol, Avon); 2013 Jul; 28(6):697-704. PubMed ID: 23830138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prosthetic gait of unilateral lower-limb amputees with current and novel prostheses: A pilot study.
    De Pauw K; Serrien B; Baeyens JP; Cherelle P; De Bock S; Ghillebert J; Bailey SP; Lefeber D; Roelands B; Vanderborght B; Meeusen R
    Clin Biomech (Bristol, Avon); 2020 Jan; 71():59-67. PubMed ID: 31704536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment.
    Fang L; Jia X; Wang R
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of prosthetic ankle units on the gait of persons with bilateral trans-femoral amputations.
    McNealy LL; Gard SA
    Prosthet Orthot Int; 2008 Mar; 32(1):111-26. PubMed ID: 18330810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of a quasi-passive biarticular prosthesis to replicate gastrocnemius function in transtibial amputee gait.
    Willson AM; Richburg CA; Anderson AJ; Muir BC; Czerniecki J; Steele KM; Aubin PM
    J Biomech; 2021 Dec; 129():110749. PubMed ID: 34583198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation.
    Houdijk H; Wezenberg D; Hak L; Cutti AG
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):76. PubMed ID: 30255807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Muscle contributions to support and progression during single-limb stance in crouch gait.
    Steele KM; Seth A; Hicks JL; Schwartz MS; Delp SL
    J Biomech; 2010 Aug; 43(11):2099-105. PubMed ID: 20493489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Segment velocities in normal and transtibial amputees: prosthetic design implications.
    Rao SS; Boyd LA; Mulroy SJ; Bontrager EL; Gronley JK; Perry J
    IEEE Trans Rehabil Eng; 1998 Jun; 6(2):219-26. PubMed ID: 9631330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite element modelling of an energy-storing prosthetic foot during the stance phase of transtibial amputee gait.
    Bonnet X; Pillet H; Fodé P; Lavaste F; Skalli W
    Proc Inst Mech Eng H; 2012 Jan; 226(1):70-5. PubMed ID: 22888587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of increasing steady-state walking speed on muscle activity in below-knee amputees.
    Fey NP; Silverman AK; Neptune RR
    J Electromyogr Kinesiol; 2010 Feb; 20(1):155-61. PubMed ID: 19303796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differences in muscle function during walking and running at the same speed.
    Sasaki K; Neptune RR
    J Biomech; 2006; 39(11):2005-13. PubMed ID: 16129444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of EMG parameter for transtibial prosthetic user with flexion and extension of the knee and normal walking gait: A preliminary study.
    Sobh KNM; Abd Razak NA; Abu Osman NA
    Proc Inst Mech Eng H; 2021 Apr; 235(4):419-427. PubMed ID: 33517847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes to transtibial amputee gait with a weighted backpack on multiple surfaces.
    Doyle SS; Lemaire ED; Besemann M; Dudek NL
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1119-24. PubMed ID: 26476601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.