These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 17045642)
1. The effect of electrochemical functionalization of Ti-alloy surfaces by aptamer-based capture molecules on cell adhesion. Guo KT; Scharnweber D; Schwenzer B; Ziemer G; Wendel HP Biomaterials; 2007 Jan; 28(3):468-74. PubMed ID: 17045642 [TBL] [Abstract][Full Text] [Related]
2. Aptamer-based capture molecules as a novel coating strategy to promote cell adhesion. Guo K; Wendel HP; Scheideler L; Ziemer G; Scheule AM J Cell Mol Med; 2005; 9(3):731-6. PubMed ID: 16202220 [TBL] [Abstract][Full Text] [Related]
3. Surface modifications and cell-materials interactions with anodized Ti. Das K; Bose S; Bandyopadhyay A Acta Biomater; 2007 Jul; 3(4):573-85. PubMed ID: 17320494 [TBL] [Abstract][Full Text] [Related]
4. Immobilized DNA aptamers used as potent attractors for porcine endothelial precursor cells. Hoffmann J; Paul A; Harwardt M; Groll J; Reeswinkel T; Klee D; Moeller M; Fischer H; Walker T; Greiner T; Ziemer G; Wendel HP J Biomed Mater Res A; 2008 Mar; 84(3):614-21. PubMed ID: 17635015 [TBL] [Abstract][Full Text] [Related]
5. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture. Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314 [TBL] [Abstract][Full Text] [Related]
6. Formation of TiO(2) nano-network on titanium surface increases the human cell growth. Chiang CY; Chiou SH; Yang WE; Hsu ML; Yung MC; Tsai ML; Chen LK; Huang HH Dent Mater; 2009 Aug; 25(8):1022-9. PubMed ID: 19329175 [TBL] [Abstract][Full Text] [Related]
7. Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. Ponader S; Vairaktaris E; Heinl P; Wilmowsky CV; Rottmair A; Körner C; Singer RF; Holst S; Schlegel KA; Neukam FW; Nkenke E J Biomed Mater Res A; 2008 Mar; 84(4):1111-9. PubMed ID: 17685409 [TBL] [Abstract][Full Text] [Related]
8. Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells. Grinevich A; Bacakova L; Choukourov A; Boldyryeva H; Pihosh Y; Slavinska D; Noskova L; Skuciova M; Lisa V; Biederman H J Biomed Mater Res A; 2009 Mar; 88(4):952-66. PubMed ID: 18384161 [TBL] [Abstract][Full Text] [Related]
9. Effects of molecular weight and surface functionalization on surface composition and cell adhesion to Hyaluronan coated titanium. Morra M; Cassinelli C; Carpi A; Giardino R; Fini M Biomed Pharmacother; 2006 Sep; 60(8):365-9. PubMed ID: 16930939 [TBL] [Abstract][Full Text] [Related]
10. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
11. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Li Y; Xiong J; Wong CS; Hodgson PD; Wen C Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266 [TBL] [Abstract][Full Text] [Related]
12. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior. Protivínský J; Appleford M; Strnad J; Helebrant A; Ong JL Int J Oral Maxillofac Implants; 2007; 22(4):542-50. PubMed ID: 17929514 [TBL] [Abstract][Full Text] [Related]
13. Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study. Ramaswamy Y; Wu C; Dunstan CR; Hewson B; Eindorf T; Anderson GI; Zreiqat H Acta Biomater; 2009 Oct; 5(8):3192-204. PubMed ID: 19457458 [TBL] [Abstract][Full Text] [Related]
14. The response of osteoblast-like cells towards collagen type I coating immobilized by p-nitrophenylchloroformate to titanium. van den Dolder J; Jansen JA J Biomed Mater Res A; 2007 Dec; 83(3):712-9. PubMed ID: 17559125 [TBL] [Abstract][Full Text] [Related]
15. Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. Shi Z; Neoh KG; Kang ET; Poh CK; Wang W Biomacromolecules; 2009 Jun; 10(6):1603-11. PubMed ID: 19391583 [TBL] [Abstract][Full Text] [Related]
16. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. Das K; Bose S; Bandyopadhyay A J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867 [TBL] [Abstract][Full Text] [Related]
17. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. Maddikeri RR; Tosatti S; Schuler M; Chessari S; Textor M; Richards RG; Harris LG J Biomed Mater Res A; 2008 Feb; 84(2):425-35. PubMed ID: 17618480 [TBL] [Abstract][Full Text] [Related]
18. [Biological properties and formation of electrodeposited HA-Ti/HA composite coatings]. Liu R; Xiao X; Zuo Y; Tang X; Gao Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):350-5. PubMed ID: 17591258 [TBL] [Abstract][Full Text] [Related]
19. Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. Müller R; Abke J; Schnell E; Scharnweber D; Kujat R; Englert C; Taheri D; Nerlich M; Angele P Biomaterials; 2006 Aug; 27(22):4059-68. PubMed ID: 16580064 [TBL] [Abstract][Full Text] [Related]
20. Improvement of Anselme's adhesion model for evaluating human osteoblast response to peptide-grafted titanium surfaces. Bagno A; Piovan A; Dettin M; Brun P; Gambaretto R; Palù G; Di Bello C; Castagliuolo I Bone; 2007 Oct; 41(4):704-12. PubMed ID: 17656172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]