These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 17045731)

  • 41. Activated bauxite waste as an adsorbent for removal of Acid Blue 92 from aqueous solutions.
    Norouzi Sh; Badii Kh; Doulati Ardejani F
    Water Sci Technol; 2010; 62(11):2491-500. PubMed ID: 21099034
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of excess fluoride from water using waste residue from alum manufacturing process.
    Nigussie W; Zewge F; Chandravanshi BS
    J Hazard Mater; 2007 Aug; 147(3):954-63. PubMed ID: 17363157
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells.
    Bulut Y; Gözübenli N; Aydin H
    J Hazard Mater; 2007 Jun; 144(1-2):300-6. PubMed ID: 17118540
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of hazardous pharmaceutical dyes by adsorption onto papaya seeds.
    Weber CT; Collazzo GC; Mazutti MA; Foletto EL; Dotto GL
    Water Sci Technol; 2014; 70(1):102-7. PubMed ID: 25026586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polymeric nanocomposites for the removal of Acid red 52 dye from aqueous solutions: Synthesis, characterization, kinetic and isotherm studies.
    Gouthaman A; Azarudeen RS; Gnanaprakasam A; Sivakumar VM; Thirumarimurugan M
    Ecotoxicol Environ Saf; 2018 Sep; 160():42-51. PubMed ID: 29783111
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adsorption of basic dye from wastewater using raw and activated red mud.
    Coruh S; Geyikçi F; Ergun ON
    Environ Technol; 2011; 32(11-12):1183-93. PubMed ID: 21970160
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies.
    Foletto EL; Weber CT; Paz DS; Mazutti MA; Meili L; Bassaco MM; Collazzo GC
    Water Sci Technol; 2013; 67(1):201-9. PubMed ID: 23128640
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics.
    Malik PK
    J Hazard Mater; 2004 Sep; 113(1-3):81-8. PubMed ID: 15363517
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite.
    Bulut E; Ozacar M; Sengil IA
    J Hazard Mater; 2008 Jun; 154(1-3):613-22. PubMed ID: 18055111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adsorptive removal of anionic dye using calcined oyster shells: isotherms, kinetics, and thermodynamics.
    Inthapanya X; Wu S; Han Z; Zeng G; Wu M; Yang C
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5944-5954. PubMed ID: 30612377
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char.
    Hameed BH; El-Khaiary MI
    J Hazard Mater; 2008 May; 153(1-2):701-8. PubMed ID: 17942219
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies.
    Tan IA; Ahmad AL; Hameed BH
    J Hazard Mater; 2008 Jun; 154(1-3):337-46. PubMed ID: 18035483
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorption of Rhodamine 6G from aqueous solutions on activated carbon.
    Annadurai G; Juang RS; Lee DJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001 May; 36(5):715-25. PubMed ID: 11460326
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methylene blue biosorption from aqueous solutions by yellow passion fruit waste.
    Pavan FA; Lima EC; Dias SL; Mazzocato AC
    J Hazard Mater; 2008 Feb; 150(3):703-12. PubMed ID: 17597293
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry.
    Nautiyal P; Subramanian KA; Dastidar MG
    J Environ Manage; 2016 Nov; 182():187-197. PubMed ID: 27474901
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption of reactive blue BF-5G dye by soybean hulls: kinetics, equilibrium and influencing factors.
    Honorio JF; Veit MT; Gonçalves Gda C; de Campos ÉA; Fagundes-Klen MR
    Water Sci Technol; 2016; 73(5):1166-74. PubMed ID: 26942540
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequestration of dyes from artificially prepared textile effluent using RSM-CCD optimized hybrid backbone based adsorbent-kinetic and equilibrium studies.
    Sukriti ; Sharma J; Chadha AS; Pruthi V; Anand P; Bhatia J; Kaith BS
    J Environ Manage; 2017 Apr; 190():176-187. PubMed ID: 28049087
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent--Kinetics and isotherm analysis.
    Radhika M; Palanivelu K
    J Hazard Mater; 2006 Nov; 138(1):116-24. PubMed ID: 16806675
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste.
    Hameed BH
    J Hazard Mater; 2008 Jun; 154(1-3):204-12. PubMed ID: 18023971
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low cost removal of reactive dyes using wheat bran.
    Ciçek F; Ozer D; Ozer A; Ozer A
    J Hazard Mater; 2007 Jul; 146(1-2):408-16. PubMed ID: 17257747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.