BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

913 related articles for article (PubMed ID: 17046185)

  • 1. Xanthan-alginate composite gel beads: molecular interaction and in vitro characterization.
    Pongjanyakul T; Puttipipatkhachorn S
    Int J Pharm; 2007 Feb; 331(1):61-71. PubMed ID: 17046185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of drug release from glyceryl palmitostearate-alginate beads via heat treatment.
    Pongjanyakul T; Sungthongjeen S; Puttipipatkhachorn S
    Int J Pharm; 2006 Aug; 319(1-2):20-8. PubMed ID: 16677785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics.
    Puttipipatkhachorn S; Pongjanyakul T; Priprem A
    Int J Pharm; 2005 Apr; 293(1-2):51-62. PubMed ID: 15778044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release characteristics of diclofenac sodium from poly(vinyl alcohol)/sodium alginate and poly(vinyl alcohol)-grafted-poly(acrylamide)/sodium alginate blend beads.
    Sanli O; Ay N; Işiklan N
    Eur J Pharm Biopharm; 2007 Feb; 65(2):204-14. PubMed ID: 16996255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of microcrystalline cellulose loaded diclofenac calcium alginate gel beads in vitro.
    Pongjanyakul T
    Pharmazie; 2007 Jul; 62(7):493-8. PubMed ID: 17718188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the drug-polymer interaction in calcium alginate beads containing diflunisal.
    Mandal B; Alexander KS; Riga AT
    Pharmazie; 2010 Feb; 65(2):106-9. PubMed ID: 20225653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of pH-sensitive tamarind seed polysaccharide-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology.
    Nayak AK; Pal D
    Int J Biol Macromol; 2011 Nov; 49(4):784-93. PubMed ID: 21816168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrapment efficiency and release characteristics of polyethyleneimine-treated or -untreated calcium alginate beads loaded with propranolol-resin complex.
    Halder A; Maiti S; Sa B
    Int J Pharm; 2005 Sep; 302(1-2):84-94. PubMed ID: 16102927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release.
    Wang Q; Xie X; Zhang X; Zhang J; Wang A
    Int J Biol Macromol; 2010 Apr; 46(3):356-62. PubMed ID: 20096301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium.
    Hua S; Ma H; Li X; Yang H; Wang A
    Int J Biol Macromol; 2010 Jun; 46(5):517-23. PubMed ID: 20223260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating drug release and matrix erosion of alginate matrix capsules by microenvironmental interaction with calcium ion.
    Pongjanyakul T; Puttipipatkhachorn S
    Eur J Pharm Biopharm; 2007 Aug; 67(1):187-95. PubMed ID: 17270407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel interpenetrating network microspheres of xanthan gum-poly(vinyl alcohol) for the delivery of diclofenac sodium to the intestine--in vitro and in vivo evaluation.
    Ray S; Banerjee S; Maiti S; Laha B; Barik S; Sa B; Bhattacharyya UK
    Drug Deliv; 2010; 17(7):508-19. PubMed ID: 20482471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices.
    Zhang J; Wang Q; Wang A
    Acta Biomater; 2010 Feb; 6(2):445-54. PubMed ID: 19596091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release behaviour of diclofenac sodium dispersed in Gelucire and encapsulated with alginate beads.
    Al-Taani B; Khanfar MS; Salem MS; Sallam A
    J Microencapsul; 2010; 27(1):10-3. PubMed ID: 20078392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads.
    Pasparakis G; Bouropoulos N
    Int J Pharm; 2006 Oct; 323(1-2):34-42. PubMed ID: 16828245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyacrylamide-grafted-alginate-based pH-sensitive hydrogel beads for delivery of ketoprofen to the intestine: in vitro and in vivo evaluation.
    Kulkarni RV; Sa B
    J Biomater Sci Polym Ed; 2009; 20(2):235-51. PubMed ID: 19154672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lyophilised wafers as a drug delivery system for wound healing containing methylcellulose as a viscosity modifier.
    Matthews KH; Stevens HN; Auffret AD; Humphrey MJ; Eccleston GM
    Int J Pharm; 2005 Jan; 289(1-2):51-62. PubMed ID: 15652198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-sensitive sodium alginate/calcined hydrotalcite hybrid beads for controlled release of diclofenac sodium.
    Hua S; Yang H; Li Q; Zhang J; Wang A
    Drug Dev Ind Pharm; 2012 Jun; 38(6):728-34. PubMed ID: 22010958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging and microwave effects on alginate/chitosan matrices.
    Wong TW; Chan LW; Kho SB; Heng PW
    J Control Release; 2005 Jun; 104(3):461-75. PubMed ID: 15911046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploitation of novel gum Prunus cerasoides as mucoadhesive beads for a controlled-release drug delivery.
    Seelan TV; Kumari HL; Kishore N; Selvamani P; Lalhlenmawia H; Thanzami K; Pachuau L; Ruckmani K
    Int J Biol Macromol; 2016 Apr; 85():667-73. PubMed ID: 26772921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.