BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 17046530)

  • 1. Acidolysis and glyceride synthesis reactions using fatty acids with two Pseudomonas lipases having different substrate specificities.
    Kojima Y; Sakuradani E; Shimizu S
    J Biosci Bioeng; 2006 Sep; 102(3):179-83. PubMed ID: 17046530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different specificity of two types of Pseudomonas lipases for C20 fatty acids with a Delta5 unsaturated double bond and their application for selective concentration of fatty acids.
    Kojima Y; Sakuradani E; Shimizu S
    J Biosci Bioeng; 2006 Jun; 101(6):496-500. PubMed ID: 16935251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidolysis of tristearin with selected long-chain fatty acids.
    Hamam F; Shahidi F
    J Agric Food Chem; 2007 Mar; 55(5):1955-60. PubMed ID: 17288439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipase specificity towards eicosapentaenoic acid and docosahexaenoic acid depends on substrate structure.
    Lyberg AM; Adlercreutz P
    Biochim Biophys Acta; 2008 Feb; 1784(2):343-50. PubMed ID: 18067872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid selectivity of lipases during acidolysis reaction between oleic acid and monoacid triacylglycerols.
    Karabulut I; Durmaz G; Hayaloglu AA
    J Agric Food Chem; 2009 Nov; 57(21):10466-70. PubMed ID: 19835376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of acylglycerols from omega-3 fatty acids and conjugated linoleic acid isomers.
    Zuta CP; Simpson BK; Yeboah FK
    Biotechnol Appl Biochem; 2006 Jan; 43(Pt 1):25-32. PubMed ID: 16008528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of the lipase from Pseudomonas fluorescens HU380.
    Kojima Y; Shimizu S
    J Biosci Bioeng; 2003; 96(3):219-26. PubMed ID: 16233513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acid selectivity of lipases during acidolysis reaction between triolein and saturated fatty acids varying from caproic to behenic acids.
    Karabulut I; Durmaz G; Hayaloglu AA
    J Agric Food Chem; 2009 Aug; 57(16):7584-90. PubMed ID: 19645505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candida rugosa lipase LIP1-catalyzed transesterification to produce human milk fat substitute.
    Srivastava A; Akoh CC; Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Jul; 54(14):5175-81. PubMed ID: 16819932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrition for the eye: different susceptibility of the retina and the lacrimal gland to dietary omega-6 and omega-3 polyunsaturated fatty acid incorporation.
    Schnebelen C; Viau S; Grégoire S; Joffre C; Creuzot-Garcher CP; Bron AM; Bretillon L; Acar N
    Ophthalmic Res; 2009; 41(4):216-24. PubMed ID: 19451735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment of eicosapentaenoic acid from sardine oil with Delta5-olefinic bond specific lipase from Bacillus licheniformis MTCC 6824.
    Chakraborty K; Paulraj R
    J Agric Food Chem; 2008 Feb; 56(4):1428-33. PubMed ID: 18237134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of structured lipids containing medium-chain and omega-3 fatty acids.
    Hamam F; Shahidi F
    J Agric Food Chem; 2006 Jun; 54(12):4390-6. PubMed ID: 16756372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of glycerides containing n-3 fatty acids and conjugated linoleic acid by solvent-free acidolysis of fish oil.
    Garcia HS; Arcos JA; Ward DJ; Hill CG
    Biotechnol Bioeng; 2000 Dec; 70(5):587-91. PubMed ID: 11042555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes.
    Sahin N; Akoh CC; Karaali A
    J Agric Food Chem; 2005 Jul; 53(14):5779-83. PubMed ID: 15998148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oleyl oleate synthesis by immobilized lipase from Candida sp.1619.
    Zhang J; Xu J
    Chin J Biotechnol; 1995; 11(4):243-51. PubMed ID: 8739102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid facts, Part III: Cardiovascular disease, or, a fish diet is not fishy.
    Pauwels EK; Kostkiewicz M
    Drug News Perspect; 2008 Dec; 21(10):552-61. PubMed ID: 19221636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient hydrolysis of tuna oil by a surfactant-coated lipase in a two-phase system.
    Ko WC; Wang HJ; Hwang JS; Hsieh CW
    J Agric Food Chem; 2006 Mar; 54(5):1849-53. PubMed ID: 16506843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of n-3 polyunsaturated fatty acid concentrate from sardine oil by immobilized Candida rugosa lipase.
    Okada T; Morrissey MT
    J Food Sci; 2008 Apr; 73(3):C146-50. PubMed ID: 18387091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-assisted acidolysis of borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils: incorporation of omega-3 polyunsaturated fatty acids.
    Senanayake SP; Shahidi F
    J Agric Food Chem; 1999 Aug; 47(8):3105-12. PubMed ID: 10552616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a crosslinked bioimprinted lipase for enrichment of polyunsaturated fatty acids from fish processing waste.
    Yan J; Li L; Tang Q; Jiang M; Jiang S
    Appl Biochem Biotechnol; 2010 Oct; 162(3):757-65. PubMed ID: 20101527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.