BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17046533)

  • 1. Optimal aerobic cultivation method for 1,4-dihydroxy-2-naphthoic acid production by Propionibacterium freudenreichii ET-3.
    Furuichi K; Amano A; Katakura Y; Ninomiya K; Shioya S
    J Biosci Bioeng; 2006 Sep; 102(3):198-205. PubMed ID: 17046533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic culture of Propionibacterium freudenreichii ET-3 can increase production ratio of 1,4-dihydroxy-2-naphthoic acid to menaquinone.
    Furuichi K; Hojo K; Katakura Y; Ninomiya K; Shioya S
    J Biosci Bioeng; 2006 Jun; 101(6):464-70. PubMed ID: 16935247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of 1,4-dihydroxy-2-naphthoic acid production by Propionibacterium freudenreichii ET-3 fed-batch culture.
    Furuichi K; Katakura Y; Ninomiya K; Shioya S
    Appl Environ Microbiol; 2007 May; 73(10):3137-43. PubMed ID: 17369348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of extracellular bifidogenic growth stimulator by anaerobic and aerobic cultivations of several propionibacterial strains.
    Kouya T; Misawa K; Horiuchi M; Nakayama E; Deguchi H; Tanaka T; Taniguchi M
    J Biosci Bioeng; 2007 May; 103(5):464-71. PubMed ID: 17609163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety of high doses of Propionibacterium freudenreichii ET-3 culture in healthy adult subjects.
    Uchida M; Tsuboi H; Takahashi Arita M; Nemoto A; Seki K; Tsunoo H; Martyres S; Roberts A
    Regul Toxicol Pharmacol; 2011 Jul; 60(2):262-7. PubMed ID: 21172397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and identification of a new bifidogenic growth stimulator produced by Propionibacterium freudenreichii ET-3.
    Isawa K; Hojo K; Yoda N; Kamiyama T; Makino S; Saito M; Sugano H; Mizoguchi C; Kurama S; Shibasaki M; Endo N; Sato Y
    Biosci Biotechnol Biochem; 2002 Mar; 66(3):679-81. PubMed ID: 12005071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical regulation of the end-product profile in Propionibacterium freudenreichii ET-3 with an endogenous mediator.
    Wang YF; Masuda M; Tsujimura S; Kano K
    Biotechnol Bioeng; 2008 Oct; 101(3):579-86. PubMed ID: 18454500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters.
    Kosourov S; Tsygankov A; Seibert M; Ghirardi ML
    Biotechnol Bioeng; 2002 Jun; 78(7):731-40. PubMed ID: 12001165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of extracellular bifidogenic growth stimulator (BGS) from Propionibacterium shermanii using a bioreactor system with a microfiltration module and an on-line controller for lactic acid concentration.
    Kouya T; Tobita K; Horiuchi M; Nakayama E; Deguchi H; Tanaka T; Taniguchi M
    J Biosci Bioeng; 2008 Mar; 105(3):184-91. PubMed ID: 18397766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1,4-Dihydroxy-2-naphthoic acid from Propionibacterium freudenreichii reduces inflammation in interleukin-10-deficient mice with colitis by suppressing macrophage-derived proinflammatory cytokines.
    Okada Y; Tsuzuki Y; Narimatsu K; Sato H; Ueda T; Hozumi H; Sato S; Hokari R; Kurihara C; Komoto S; Watanabe C; Tomita K; Kawaguchi A; Nagao S; Miura S
    J Leukoc Biol; 2013 Sep; 94(3):473-80. PubMed ID: 23801651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A derivative of the menaquinone precursor 1,4-dihydroxy-2-naphthoate is involved in the reductive transformation of carbon tetrachloride by aerobically grown Shewanella oneidensis MR-1.
    Ward MJ; Fu QS; Rhoads KR; Yeung CH; Spormann AM; Criddle CS
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):571-7. PubMed ID: 12908086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions.
    Vemuri GN; Eiteman MA; Altman E
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):325-32. PubMed ID: 12032805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic pathway of Propionibacterium growing with oxygen: enzymes, 13C NMR analysis, and its application for vitamin B12 production with periodic fermentation.
    Ye K; Shijo M; Miyano K; Shimizu K
    Biotechnol Prog; 1999; 15(2):201-7. PubMed ID: 10194395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview.
    Garcia-Ochoa F; Gomez E
    Biotechnol Adv; 2009; 27(2):153-76. PubMed ID: 19041387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressive effects of 1,4-dihydroxy-2-naphthoic acid administration on bone resorption.
    Matsubara M; Yamachika E; Tsujigiwa H; Mizukawa N; Ueno T; Murakami J; Ishida N; Kaneda Y; Shirasu N; Takagi S
    Osteoporos Int; 2010 Aug; 21(8):1437-47. PubMed ID: 19813044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance of nutrient-deprived Listeria monocytogenes 10403S and a DeltasigB mutant to chemical stresses in the presence or absence of oxygen.
    Lungu B; Ricke SC; Johnson MG
    J Food Sci; 2008 Sep; 73(7):M339-45. PubMed ID: 18803717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11.
    Okuda N; Ninomiya K; Takao M; Katakura Y; Shioya S
    J Biosci Bioeng; 2007 Apr; 103(4):350-7. PubMed ID: 17502277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions.
    Cardoso FS; Gaspar P; Hugenholtz J; Ramos A; Santos H
    Int J Food Microbiol; 2004 Mar; 91(2):195-204. PubMed ID: 14996463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of oxygen on Propionibacterium shermanii grown in continuous culture.
    Pritchard GG; Wimpenny JW; Morris HA; Lewis MW; Hughes DE
    J Gen Microbiol; 1977 Oct; 102(2):223-33. PubMed ID: 925678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.
    Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M
    FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.