BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 17046697)

  • 1. Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction.
    Costa RM; Lin SC; Sotnikova TD; Cyr M; Gainetdinov RR; Caron MG; Nicolelis MA
    Neuron; 2006 Oct; 52(2):359-69. PubMed ID: 17046697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats.
    Belluscio MA; Riquelme LA; Murer MG
    Eur J Neurosci; 2007 May; 25(9):2791-804. PubMed ID: 17561844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial depletion of dopamine in substantia nigra impairs motor performance without altering striatal dopamine neurotransmission.
    Andersson DR; Nissbrandt H; Bergquist F
    Eur J Neurosci; 2006 Jul; 24(2):617-24. PubMed ID: 16903863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focused motor stereotypies do not require enhanced activation of neurons in striosomes.
    Glickstein SB; Schmauss C
    J Comp Neurol; 2004 Feb; 469(2):227-38. PubMed ID: 14694536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular principles underlying normal and pathological activity in the subthalamic nucleus.
    Bevan MD; Atherton JF; Baufreton J
    Curr Opin Neurobiol; 2006 Dec; 16(6):621-8. PubMed ID: 17084618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperdopaminergia and altered locomotor activity in GABAB1-deficient mice.
    Vacher CM; Gassmann M; Desrayaud S; Challet E; Bradaia A; Hoyer D; Waldmeier P; Kaupmann K; Pévet P; Bettler B
    J Neurochem; 2006 May; 97(4):979-91. PubMed ID: 16606363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosine hydroxylase cells appearing in the mouse striatum after dopamine denervation are likely to be projection neurones regulated by L-DOPA.
    Darmopil S; Muñetón-Gómez VC; de Ceballos ML; Bernson M; Moratalla R
    Eur J Neurosci; 2008 Feb; 27(3):580-92. PubMed ID: 18279311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional organization of the basal ganglia: therapeutic implications for Parkinson's disease.
    Obeso JA; Rodríguez-Oroz MC; Benitez-Temino B; Blesa FJ; Guridi J; Marin C; Rodriguez M
    Mov Disord; 2008; 23 Suppl 3():S548-59. PubMed ID: 18781672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of corticostriatal glutamatergic fibers in basic fibroblast growth factor deficient mice is associated with hyperactivity and enhanced dopaminergic transmission.
    Fadda P; Bedogni F; Fresu A; Collu M; Racagni G; Riva MA
    Biol Psychiatry; 2007 Aug; 62(3):235-42. PubMed ID: 17161387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic changes detected by proton magnetic resonance spectroscopy in vivo and in vitro in a murin model of Parkinson's disease, the MPTP-intoxicated mouse.
    Chassain C; Bielicki G; Durand E; Lolignier S; Essafi F; Traoré A; Durif F
    J Neurochem; 2008 May; 105(3):874-82. PubMed ID: 18088356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The striopallidal system: Its implication in motor disorders.
    Poirier LJ; Parent A; Roberge AG
    Pathobiol Annu; 1975; 5():339-67. PubMed ID: 812038
    [No Abstract]   [Full Text] [Related]  

  • 12. Basal ganglia oscillations and pathophysiology of movement disorders.
    Rivlin-Etzion M; Marmor O; Heimer G; Raz A; Nini A; Bergman H
    Curr Opin Neurobiol; 2006 Dec; 16(6):629-37. PubMed ID: 17084615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine-dependent periadolescent maturation of corticostriatal functional connectivity in mouse.
    Galiñanes GL; Taravini IR; Murer MG
    J Neurosci; 2009 Feb; 29(8):2496-509. PubMed ID: 19244524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and cellular alterations in the Pitx3-deficient midbrain dopaminergic system.
    Smits SM; Mathon DS; Burbach JP; Ramakers GM; Smidt MP
    Mol Cell Neurosci; 2005 Nov; 30(3):352-63. PubMed ID: 16140547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in nigral NMDA and GABAA receptor control of the striatal dopamine level after repetitive exposures to nitrogen narcosis.
    Lavoute C; Weiss M; Rostain JC
    Exp Neurol; 2008 Jul; 212(1):63-70. PubMed ID: 18452916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons.
    Cepeda C; André VM; Yamazaki I; Wu N; Kleiman-Weiner M; Levine MS
    Eur J Neurosci; 2008 Feb; 27(3):671-82. PubMed ID: 18279319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction time performance following unilateral striatal dopamine depletion and lesions of the subthalamic nucleus in the rat.
    Phillips JM; Brown VJ
    Eur J Neurosci; 1999 Mar; 11(3):1003-10. PubMed ID: 10223809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T3 administration in adult hypothyroid mice modulates expression of proteins involved in striatal synaptic plasticity and improves motor behavior.
    Vallortigara J; Alfos S; Micheau J; Higueret P; Enderlin V
    Neurobiol Dis; 2008 Sep; 31(3):378-85. PubMed ID: 18585460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facing the lack of anti-phase oscillation in the parafascicular nucleus after dopamine depletion.
    Tseng KY
    Exp Neurol; 2009 Sep; 219(1):62-5. PubMed ID: 19501087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral responses and Fos activation following painful stimuli in a rodent model of Parkinson's disease.
    Tassorelli C; Armentero MT; Greco R; Fancellu R; Sandrini G; Nappi G; Blandini F
    Brain Res; 2007 Oct; 1176():53-61. PubMed ID: 17884026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.