BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17046786)

  • 1. Vimentin binding to phosphorylated Erk sterically hinders enzymatic dephosphorylation of the kinase.
    Perlson E; Michaelevski I; Kowalsman N; Ben-Yaakov K; Shaked M; Seger R; Eisenstein M; Fainzilber M
    J Mol Biol; 2006 Dec; 364(5):938-44. PubMed ID: 17046786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve.
    Perlson E; Hanz S; Ben-Yaakov K; Segal-Ruder Y; Seger R; Fainzilber M
    Neuron; 2005 Mar; 45(5):715-26. PubMed ID: 15748847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermediate filament proteins participate in signal transduction.
    Helfand BT; Chou YH; Shumaker DK; Goldman RD
    Trends Cell Biol; 2005 Nov; 15(11):568-70. PubMed ID: 16213139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular dephosphorylation of ERK by MKP3.
    Kim Y; Rice AE; Denu JM
    Biochemistry; 2003 Dec; 42(51):15197-207. PubMed ID: 14690430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of extracellular signal-regulated kinase in sciatic nerve contributes to neuropathic pain after partial sciatic nerve ligation in mice.
    Kiguchi N; Maeda T; Kobayashi Y; Fukazawa Y; Kishioka S
    Anesth Analg; 2009 Oct; 109(4):1305-11. PubMed ID: 19762761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retaining of the assembly capability of vimentin phosphorylated by mitogen-activated protein kinase-activated protein kinase-2.
    Cheng TJ; Tseng YF; Chang WM; Chang MD; Lai YK
    J Cell Biochem; 2003 Jun; 89(3):589-602. PubMed ID: 12761892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vimentin phosphorylation as a target of cell signaling mechanisms induced by 1alpha,25-dihydroxyvitamin D3 in immature rat testes.
    Zamoner A; Pierozan P; Vidal LF; Lacerda BA; Dos Santos NG; Vanzin CS; Pessoa-Pureur R
    Steroids; 2008 Dec; 73(14):1400-8. PubMed ID: 18687349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNT-2 interacts with ERK2 and negatively regulates ERK2 signaling in response to EGF stimulation.
    Huang L; Gotoh N; Zhang S; Shibuya M; Yamamoto T; Tsuchida N
    Biochem Biophys Res Commun; 2004 Nov; 324(3):1011-7. PubMed ID: 15485655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An altered fibronectin matrix induces anoikis of human squamous cell carcinoma cells by suppressing integrin alpha v levels and phosphorylation of FAK and ERK.
    Kamarajan P; Kapila YL
    Apoptosis; 2007 Dec; 12(12):2221-31. PubMed ID: 17879163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation.
    Wang PY; Weng J; Anderson RG
    Science; 2005 Mar; 307(5714):1472-6. PubMed ID: 15746430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of human mono-phosphorylated ERK1 at Tyr204.
    Kinoshita T; Yoshida I; Nakae S; Okita K; Gouda M; Matsubara M; Yokota K; Ishiguro H; Tada T
    Biochem Biophys Res Commun; 2008 Dec; 377(4):1123-7. PubMed ID: 18983981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1.
    Kilanczyk E; Filipek S; Jastrzebska B; Filipek A
    Biochem Biophys Res Commun; 2009 Feb; 380(1):54-9. PubMed ID: 19166809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-specific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways.
    Liu W; Liang Q; Balzar S; Wenzel S; Gorska M; Alam R
    J Allergy Clin Immunol; 2008 Apr; 121(4):893-902.e2. PubMed ID: 18395552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ERK2-binding domain is required for phosphorylation of EBITEIN1, a potential downstream interactor of ERK2.
    Miura K
    Biochem Biophys Res Commun; 2008 Oct; 375(3):367-71. PubMed ID: 18700133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-photic phase shifting of the circadian clock: role of the extracellular signal-responsive kinases I/II/mitogen-activated protein kinase pathway.
    Antle MC; Tse F; Koke SJ; Sterniczuk R; Hagel K
    Eur J Neurosci; 2008 Dec; 28(12):2511-8. PubMed ID: 19087176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relaxin family peptide receptor 3 activates extracellular signal-regulated kinase 1/2 through a protein kinase C-dependent mechanism.
    van der Westhuizen ET; Werry TD; Sexton PM; Summers RJ
    Mol Pharmacol; 2007 Jun; 71(6):1618-29. PubMed ID: 17351017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-terminal hemocyanin from hemocytes of Penaeus vannamei interacts with ERK1/2 and undergoes serine phosphorylation.
    Havanapan PO; Kanlaya R; Bourchookarn A; Krittanai C; Thongboonkerd V
    J Proteome Res; 2009 May; 8(5):2476-83. PubMed ID: 19284748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-based assays to probe the ERK MAP kinase pathway in endothelial cells.
    Wyler MR; Smith DH; Cayanis E; Többen U; Aulner N; Mayer T
    Methods Mol Biol; 2009; 486():29-41. PubMed ID: 19347614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatase-mediated crosstalk control of ERK and p38 MAPK signaling in corneal epithelial cells.
    Wang Z; Yang H; Tachado SD; Capó-Aponte JE; Bildin VN; Koziel H; Reinach PS
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5267-75. PubMed ID: 17122112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docking interactions induce exposure of activation loop in the MAP kinase ERK2.
    Zhou T; Sun L; Humphreys J; Goldsmith EJ
    Structure; 2006 Jun; 14(6):1011-9. PubMed ID: 16765894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.