These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Initial investigation of a novel light-scattering gel phantom for evaluation of optical CT scanners for radiotherapy gel dosimetry. Bosi S; Naseri P; Puran A; Davies J; Baldock C Phys Med Biol; 2007 May; 52(10):2893-903. PubMed ID: 17473358 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of Tuneable Tissue-Mimicking Phantom for Optical Methods. Li T; Di Costanzo Mata A; Kalyanov A; Wolf M; Jiang J Adv Exp Med Biol; 2024; 1463():239-243. PubMed ID: 39400830 [TBL] [Abstract][Full Text] [Related]
7. Copolymer-in-oil phantom materials for elastography. Oudry J; Bastard C; Miette V; Willinger R; Sandrin L Ultrasound Med Biol; 2009 Jul; 35(7):1185-97. PubMed ID: 19427100 [TBL] [Abstract][Full Text] [Related]
8. Study of the effect of mechanical pressure on determination of position and size of tumor in biological phantoms. Ansari MA; Erfanzadeh M; Alikhani S; Mohajerani E Appl Opt; 2013 Apr; 52(12):2739-49. PubMed ID: 23669685 [TBL] [Abstract][Full Text] [Related]
9. Investigation of detection limits for diffuse optical tomography systems: I. Theory and experiment. Ziegler R; Brendel B; Schipper A; Harbers R; Beek Mv; Rinneberg H; Nielsen T Phys Med Biol; 2009 Jan; 54(2):399-412. PubMed ID: 19098359 [TBL] [Abstract][Full Text] [Related]
10. Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media. Björn S; Ntziachristos V; Schulz R Opt Express; 2010 Apr; 18(8):8422-9. PubMed ID: 20588688 [TBL] [Abstract][Full Text] [Related]
11. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lualdi M; Colombo A; Farina B; Tomatis S; Marchesini R Lasers Surg Med; 2001; 28(3):237-43. PubMed ID: 11295758 [TBL] [Abstract][Full Text] [Related]
12. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems. Ejofodomi OA; Zderic V; Zara JM Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465 [TBL] [Abstract][Full Text] [Related]
13. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths. Greening GJ; Istfan R; Higgins LM; Balachandran K; Roblyer D; Pierce MC; Muldoon TJ J Biomed Opt; 2014; 19(11):115002. PubMed ID: 25387084 [TBL] [Abstract][Full Text] [Related]
14. Gel electrophoresis of polystyrene particles in glutaraldehyde crosslinked polyvinyl alcohol. Pospichal J; Tietz D; Ittyerah TR; Halpern D; Chrambach A Electrophoresis; 1991 May; 12(5):338-41. PubMed ID: 1935874 [TBL] [Abstract][Full Text] [Related]
15. An elastically compressible phantom material with mechanical and x-ray attenuation properties equivalent to breast tissue. Price BD; Gibson AP; Tan LT; Royle GJ Phys Med Biol; 2010 Feb; 55(4):1177-88. PubMed ID: 20107248 [TBL] [Abstract][Full Text] [Related]
17. Optical phantoms of varying geometry based on thin building blocks with controlled optical properties. de Bruin DM; Bremmer RH; Kodach VM; de Kinkelder R; van Marle J; van Leeuwen TG; Faber DJ J Biomed Opt; 2010; 15(2):025001. PubMed ID: 20459242 [TBL] [Abstract][Full Text] [Related]
18. Acoustical properties of selected tissue phantom materials for ultrasound imaging. Zell K; Sperl JI; Vogel MW; Niessner R; Haisch C Phys Med Biol; 2007 Oct; 52(20):N475-84. PubMed ID: 17921571 [TBL] [Abstract][Full Text] [Related]