These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 17047281)
1. The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Hrapko M; van Dommelen JA; Peters GW; Wismans JS Biorheology; 2006; 43(5):623-36. PubMed ID: 17047281 [TBL] [Abstract][Full Text] [Related]
2. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations. Colgan NC; Gilchrist MD; Curran KM Prog Biophys Mol Biol; 2010 Dec; 103(2-3):304-9. PubMed ID: 20869383 [TBL] [Abstract][Full Text] [Related]
3. Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Bilston LE; Liu Z; Phan-Thien N Biorheology; 2001; 38(4):335-45. PubMed ID: 11673648 [TBL] [Abstract][Full Text] [Related]
4. Shear linear behavior of brain tissue over a large frequency range. Nicolle S; Lounis M; Willinger R; Palierne JF Biorheology; 2005; 42(3):209-23. PubMed ID: 15894820 [TBL] [Abstract][Full Text] [Related]
5. Towards a reliable characterisation of the mechanical behaviour of brain tissue: The effects of post-mortem time and sample preparation. Garo A; Hrapko M; van Dommelen JA; Peters GW Biorheology; 2007; 44(1):51-8. PubMed ID: 17502689 [TBL] [Abstract][Full Text] [Related]
6. Characterisation of the mechanical behaviour of brain tissue in compression and shear. Hrapko M; van Dommelen JA; Peters GW; Wismans JS Biorheology; 2008; 45(6):663-76. PubMed ID: 19065013 [TBL] [Abstract][Full Text] [Related]
7. Frequency dependence of complex moduli of brain tissue using a fractional Zener model. Kohandel M; Sivaloganathan S; Tenti G; Darvish K Phys Med Biol; 2005 Jun; 50(12):2799-805. PubMed ID: 15930603 [TBL] [Abstract][Full Text] [Related]
8. Linear viscoelastic behavior of subcutaneous adipose tissue. Geerligs M; Peters GW; Ackermans PA; Oomens CW; Baaijens FP Biorheology; 2008; 45(6):677-88. PubMed ID: 19065014 [TBL] [Abstract][Full Text] [Related]
9. Viscoelastic material model for the temporomandibular joint disc derived from dynamic shear tests or strain-relaxation tests. Koolstra JH; Tanaka E; Van Eijden TM J Biomech; 2007; 40(10):2330-4. PubMed ID: 17141788 [TBL] [Abstract][Full Text] [Related]
10. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. LaPlaca MC; Cullen DK; McLoughlin JJ; Cargill RS J Biomech; 2005 May; 38(5):1093-105. PubMed ID: 15797591 [TBL] [Abstract][Full Text] [Related]
11. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. Van Loocke M; Lyons CG; Simms CK J Biomech; 2008; 41(7):1555-66. PubMed ID: 18396290 [TBL] [Abstract][Full Text] [Related]
12. Large deformation shear properties of liver tissue. Liu Z; Bilston LE Biorheology; 2002; 39(6):735-42. PubMed ID: 12454439 [TBL] [Abstract][Full Text] [Related]
13. Modified Bilston nonlinear viscoelastic model for finite element head injury studies. Shen F; Tay TE; Li JZ; Nigen S; Lee PV; Chan HK J Biomech Eng; 2006 Oct; 128(5):797-801. PubMed ID: 16995770 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear viscoelastic properties of articular cartilage in shear. Spirt AA; Mak AF; Wassell RP J Orthop Res; 1989; 7(1):43-9. PubMed ID: 2908911 [TBL] [Abstract][Full Text] [Related]
15. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. Ning X; Zhu Q; Lanir Y; Margulies SS J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695 [TBL] [Abstract][Full Text] [Related]
16. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Liu Z; Bilston L Biorheology; 2000; 37(3):191-201. PubMed ID: 11026939 [TBL] [Abstract][Full Text] [Related]
17. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues. Nicolle S; Vezin P; Palierne JF J Biomech; 2010 Mar; 43(5):927-32. PubMed ID: 19954778 [TBL] [Abstract][Full Text] [Related]
18. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament. Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853 [TBL] [Abstract][Full Text] [Related]
19. The applicability of the time/temperature superposition principle to brain tissue. Peters GW; Meulman JH; Sauren AA Biorheology; 1997; 34(2):127-38. PubMed ID: 9373395 [TBL] [Abstract][Full Text] [Related]
20. The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model. Defrate LE; Li G Biomech Model Mechanobiol; 2007 Jul; 6(4):245-51. PubMed ID: 16941137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]